Description Usage Arguments Value See Also Examples
This function uses iterative multiple imputation idea to compute the distance between p-values of t-tests from imputed datasets to see whether the already generated sets of imputed data are sufficient for such analysis or not.
1 2 3  | imi.glm.conv(data.imp,epsilon,x, y = NULL, alternative='two.sided',
              mu,paired = FALSE, var.equal = FALSE, conf.level = 0.95,
              conv.plot=TRUE,successive.valid=3)
 | 
data.imp | 
 A list imputed sets of data as its components.  | 
epsilon | 
 The threshold for difference between two iterations.  | 
x | 
 Name of the data column which the t-test should be performed on it.  | 
y | 
 In case of two sample t-test this input variable specifiess the name of the second column for paired-test, or an indicator variable showing different populations for indepdendent two sample t-test.  | 
alternative | 
 A character string specifying the alternative hypothesis, it takes the values "two.sided" (default), "greater" or "less".  | 
mu | 
 A real number specifying the test value.  | 
paired | 
 A logical value specifying whether a paired t-test should be performed or not.  | 
var.equal | 
 A logical value specifying whether variance equality should be assumed or not.  | 
conf.level | 
 Confidence level of the test.  | 
conv.plot | 
 A logitical value, if TRUE then a convergence plot will be generated, if FALSE no plot will be provided.  | 
successive.valid | 
 An integer with minimum 1 which specifies the number of successive steps the stopping rule should be validated so the procedure could terminate.  | 
dis.steps  | 
 A vector with computed distance between iterations.  | 
sufficient.M  | 
 An integer indicating the minumum number of sufficent imputed datasets, in case of insufficiency it will take the value 'Not sufficient!'  | 
imi.t.test
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27  | # In th setting of the example of imi.t.test
imi.t.test.conv (chol.ttest$data.imp,epsilon=0.05/10,x=names(cholesterol)[3], 
+     y = NULL, alternative='two.sided',mu,paired = FALSE, var.equal = FALSE,
+                        conf.level = 0.95,conv.plot=TRUE,successive.valid=3)
$dis.steps
 [1] 0.3117110189 0.1578016324 0.0295781152 0.0487635084 0.0288667328 0.0318036141 0.0173372375 
 [8] 0.0090263689 0.0575828782
[10] 0.0007220647 0.0145497285 0.0417895357 0.0044211378 0.0124385165 0.0203312525 
[16] 0.0050927153 0.0058802488 0.0117815975
[19] 0.0022407713 0.0026592932 0.0007328110
$sufficient.M
[1] 22
>
> imi.t.test.conv (chol.ttest$data.imp,epsilon=0.05/100,x=names(cholesterol)[3], 
+        y = NULL, alternative='two.sided',mu,paired = FALSE, var.equal = FALSE,
+                  conf.level = 0.95,conv.plot=TRUE,successive.valid=3)
$dis.steps
 [1] 0.3117110189 0.1578016324 0.0295781152 0.0487635084 0.0288667328 0.0318036141 0.0173372375
 [8] 0.0090263689 0.0575828782
[10] 0.0007220647 0.0145497285 0.0417895357 0.0044211378 0.0124385165 0.0203312525 0.0050927153 
[17] 0.0058802488 0.0117815975
[19] 0.0022407713 0.0026592932 0.0007328110
$sufficient.M
[1] "Not sufficient!"
 | 
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.