#' @title MLE of Laupacis' type NNT in Exponential dist.
#'
#' @description Internal function. Not for users. Takes two numeric vectors of control and treatment results
#' and returns the MLE of the Laupacis' type NNT in Exponential distribution.
#' @param treat a numeric vector of the treatment arm results
#' @param control a numeric vector of the control arm results
#' @param tau a scalar that indicates the MCID
#' @param yt_bar mean value of the treatment arm vector
#' @param yc_bar mean value of the control arm vector
#' @param p_c sample proportion of success in the control arm
#' @param p_t sample proportion of success in the treatment arm
#' @param p_t.boot BS estimator of the sample proportion of success in the treatment arm
#' @param p_c.boot BS estimator of the sample proportion of success in the control arm
#' @param n_c number of observations in the control arm
#' @param n_t number of observations in the treatment arm
#' @return MLE of the Laupacis' type NNT for Exponential distribution
#' @keywords internal
##############################
### NNT MLE EXPON INCREASE ###
##############################
mle_exp_inc = function( treat, control, tau, yt_bar, yc_bar, p_t.boot, p_c.boot, n_c, n_t ) {
nnt.v = ifelse( ( exp( - yt_bar ^ (-1) * tau ) - exp( - yc_bar ^ (-1) * tau ) ) ^ (-1) > 1,
( exp( - yt_bar ^ (-1) * tau ) - exp( - yc_bar ^ (-1) * tau ) ) ^ (-1),
Inf )
nnt.v.bs = ifelse( ( exp( - p_t.boot$t[ ,3] ^ (-1) * tau ) - exp( - p_c.boot$t[ ,3] ^ (-1) * tau ) ) ^ (-1) > 0,
( exp( - p_t.boot$t[ ,3] ^ (-1) * tau ) - exp( - p_c.boot$t[ ,3] ^ (-1) * tau ) ) ^ (-1),
Inf )
# DELTA's CI
# gradient of nnt.v
grad.nnt = c( nnt.v ^ 2 * exp( - ( yt_bar ) ^ (-1) * tau ) * tau,
- nnt.v ^ 2 * exp( - ( yc_bar ) ^ (-1) * tau ) * tau )
# inverse Fisher inf. matrix of lambda_t, lambda_c
inv_fisher = diag( c( ( yt_bar ) ^ (-2),
( yc_bar ) ^ (-2) ) , 2 )
# variance of nnt.v
var_nnt.v = t( grad.nnt ) %*% inv_fisher %*% grad.nnt * ( n_c + n_t ) / ( 2 * n_t * n_c )
# nnt.v delta CI
ci.d.mle = c( max( nnt.v - 1.96 * sqrt( var_nnt.v ), 1),
nnt.v + 1.96 * sqrt( var_nnt.v ) )
# BS CI
ci.bs = c( max( quantile(nnt.v.bs, .025), 1), quantile(nnt.v.bs, .975) )
output = cbind( nnt.v, t( ci.d.mle ), t( ci.bs ) )
colnames(output) = c( "NNT MLE",
"CI DELTA L", "CI DELTA R",
"CI BS L", "CI BS R" )
return( output )
}
##############################
### NNT MLE EXPON DECREASE ###
##############################
mle_exp_dec = function( treat, control, tau, yt_bar, yc_bar, p_t.boot, p_c.boot, n_c, n_t ) {
nnt.v = ifelse( ( - exp( - yt_bar ^ (-1) * tau ) + exp( - yc_bar ^ (-1) * tau ) ) ^ (-1) > 1,
( - exp( - yt_bar ^ (-1) * tau ) + exp( - yc_bar ^ (-1) * tau ) ) ^ (-1),
Inf )
nnt.v.bs = ifelse( ( - exp( - p_t.boot$t[ ,3] ^ (-1) * tau ) + exp( - p_c.boot$t[ ,3] ^ (-1) * tau ) ) ^ (-1) > 0,
( - exp( - p_t.boot$t[ ,3] ^ (-1) * tau ) + exp( - p_c.boot$t[ ,3] ^ (-1) * tau ) ) ^ (-1),
Inf )
# DELTA's CI
# gradient of nnt.v
grad.nnt = c( nnt.v ^ 2 * exp( - ( yt_bar ) ^ (-1) * tau ) * tau,
- nnt.v ^ 2 * exp( - ( yc_bar ) ^ (-1) * tau ) * tau )
# inverse Fisher inf. matrix of lambda_t, lambda_c
inv_fisher = diag( c( ( yt_bar ) ^ (-2),
( yc_bar ) ^ (-2) ) , 2 )
# variance of nnt.v
var_nnt.v = t( grad.nnt ) %*% inv_fisher %*% grad.nnt * ( n_c + n_t ) / ( 2 * n_t * n_c )
# nnt.v delta CI
ci.d.mle = c( max( nnt.v - 1.96 * sqrt( var_nnt.v ), 1),
nnt.v + 1.96 * sqrt( var_nnt.v ) )
# BS CI
ci.bs = c( max( quantile(nnt.v.bs, .025), 1), quantile(nnt.v.bs, .975) )
output = cbind( nnt.v, t( ci.d.mle ), t( ci.bs ) )
colnames(output) = c( "NNT MLE",
"CI DL L", "CI DL U",
"CI NBS L", "CI NBS U" )
return( output )
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.