Description Usage Arguments Details Value Author(s) References See Also Examples
Computes Zij-values of item pairs, Zi-values of items, and Z-value of the entire scale, which are used to test whether Hij, Hi, and H, respectively, are significantly greater than some given lowerbound using the original method Z (Molenaar and Sijtsma, 2000, pp. 59-62; Sijtsma and Molenaar, p. 40; Van der Ark, 2007; 2010) or the delta method (Kuijpers, Van der Ark, & Croon, 2013; Koopman, Zijlstra, & Van der Ark, 2020). The delta method can also handle nested data.
Used in the function aisp
1 |
X |
matrix or data frame of numeric data
containing the responses of |
lowerbound |
Value of the null hypothesis to which the scalability are compared to compute the Z-score (see details),
0 <= |
type.se |
Indicates which type of standard errors is used to compute the Z-score: "delta": uses standard errors approximated by the delta method (Kuijpers, Van der Ark, Kroon, 2013; Koopman, Zijlstra, Van der Ark, 2020); "Z": uses original Z-test (Mokken, 1971; Molenaar and Sijtsma, 2000; Sijtsma and Molenaar, 2002). The default is "delta". |
level.two.var |
vector of length |
The Z-score for item-pair coefficient H_{ij} with standard error SE(H_{ij}) is computed as
Z = \frac{\widehat{H}_{ij} - lowerbound}{SE(H_{ij})}
.
Unlike coefH
, standard errors are not provided.
Zij |
matrix containing the Z-values of the item-pairs |
Zi |
vector containing Z-values of the items |
Z |
Z-value of the entire scale |
L. A. van der Ark L.A.vanderArk@uva.nl L. Koopman
Koopman, L. Zijlstra, B. J. H, & Van der Ark, L. A. (2020). A two-step procedure for scaling multilevel data using Mokken's scalability coefficients. Manuscript submitted for publication.
Kuijpers, R. E., Van der Ark, L. A., and Croon, M. A. (2013). Standard errors and confidence intervals for scalability coefficients in Mokken scale analysis using marginal models. Sociological Methodology, 43, 42-69.
Molenaar, I.W. and Sijtsma, K. (2000) User's Manual MSP5 for Windows [Software manual]. Groningen, The Netherlands: IEC ProGAMMA.
Sijtsma, K, and Molenaar, I. W. (2002) Introduction to nonparametric item response theory. Thousand Oaks, CA: Sage.
Van der Ark, L. A. (2007). Mokken scale analysis in R. Journal of Statistical Software. http://www.jstatsoft.org/v20/i11
Van der Ark, L. A. (2010). Getting started with Mokken scale analysis in R. Unpublished manuscript. https://sites.google.com/a/tilburguniversity.edu/avdrark/mokken
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 | data(acl)
Communality <- acl[,1:10]
# Compute the Z-score of each coefficient
coefH(Communality)
coefZ(Communality)
# Using lowerbound .3
coefZ(Communality, lowerbound = .3)
# Z-scores for nested data
data(autonomySupport)
scores <- autonomySupport[, -1]
classes <- autonomySupport[, 1]
coefH(scores, level.two.var = classes)
coefZ(scores, level.two.var = classes)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.