#############################
##
## Dec 11 2019
## updated Dec 12, using plot_id in all data
## Process Will's data
## Writes file to _tidy and put in package
##
## last updated: feb 18 2020 (added dates)
##############################
rm(list=ls())
library(tidyverse)
library(lubridate)
library(janitor)
pk <- read_csv("data-raw/plotkey/plotkey.csv")
# 2013 --------------------------------------------------------------------
w13 <- read_csv("data-raw/cornbio_wo/raw_cornbio13_wo.csv", skip = 2) %>%
clean_names()
y13 <-
w13 %>%
mutate(date = as.character(date),
lubedate = mdy(date),
year = year(lubedate),
doy = yday(lubedate)) %>%
select(-date) %>%
rename(date = lubedate) %>%
select(year, date, doy, everything())
# Separate his cols by mass (4-8), whole plant cn (9-12), leaf cn (13-16)
# stalk (17-20), cob+tassle(21-24), grain (25-28)
# Rename if necssary
# mass
m13 <-
y13 %>%
select(year:grain_g) %>%
rename("plant" = whole_plant_g,
"leaf" = leaf_g,
"stalk" = stalk_g,
"cobtass" = cob_tassle_g,
"grain" = grain_g) %>%
pivot_longer(plant:grain, names_to = "organ", values_to = "mass_g")
# whole plant
p13 <-
y13 %>%
select(year:plot,
total_c_g:percent_n) %>%
rename("totC_g" = total_c_g,
"totN_g" = total_n_g,
"CN_ratio" = c_n,
"N_prct" = percent_n) %>%
mutate(organ = "plant")
# leaf
l13 <-
y13 %>%
select(year:plot,
total_c_g_1:percent_n_1) %>%
rename("totC_g" = total_c_g_1,
"totN_g" = total_n_g_1,
"CN_ratio" = c_n_1,
"N_prct" = percent_n_1) %>%
mutate(organ = "leaf")
# stalk
s13 <-
y13 %>%
select(year:plot,
total_c_g_2:percent_n_2) %>%
rename("totC_g" = total_c_g_2,
"totN_g" = total_n_g_2,
"CN_ratio" = c_n_2,
"N_prct" = percent_n_2) %>%
mutate(organ = "stalk")
# cob tassle
ct13 <-
y13 %>%
select(year:plot,
total_c_g_3:percent_n_3) %>%
rename("totC_g" = total_c_g_3,
"totN_g" = total_n_g_3,
"CN_ratio" = c_n_3,
"N_prct" = percent_n_3) %>%
mutate(organ = "cobtassle")
# grain
g13 <-
y13 %>%
select(year:plot,
total_c_g_4:percent_n_4) %>%
rename("totC_g" = total_c_g_4,
"totN_g" = total_n_g_4,
"CN_ratio" = c_n_4,
"N_prct" = percent_n_4) %>%
mutate(organ = "grain")
CN13 <- bind_rows(p13, l13, s13, ct13, g13)
d13 <-
CN13 %>%
left_join(m13) %>%
select(year, date, doy, plot, organ, mass_g, everything()) %>%
filter(!is.na(year))
# 2014 --------------------------------------------------------------------
# same thing as above
w14 <- read_csv("data-raw/cornbio_wo/raw_cornbio14_wo.csv", skip = 2) %>%
clean_names()
y14 <-
w14 %>%
mutate(date = as.character(date),
lubedate = mdy(date),
year = 2014, #--there are typos, it switches to 2019 in september...
doy = yday(lubedate)) %>%
select(-date) %>%
rename(date = lubedate) %>%
select(year, date, doy, everything())
# mass
m14 <-
y14 %>%
select(year:grain_g) %>%
rename("plant" = whole_plant_g,
"leaf" = leaf_g,
"stalk" = stalk_g,
"cobtass" = cob_tassle_g,
"grain" = grain_g) %>%
pivot_longer(plant:grain, names_to = "organ", values_to = "mass_g")
# whole plant cn
p14 <-
y14 %>%
select(year:plot,
total_c_g:percent_n) %>%
rename("totC_g" = total_c_g,
"totN_g" = total_n_g,
"CN_ratio" = c_n,
"N_prct" = percent_n) %>%
mutate(organ = "plant")
# leaf
l14 <-
y14 %>%
select(year:plot,
total_c_g_1:percent_n_1) %>%
rename("totC_g" = total_c_g_1,
"totN_g" = total_n_g_1,
"CN_ratio" = c_n_1,
"N_prct" = percent_n_1) %>%
mutate(organ = "leaf")
# stalk
s14 <-
y14 %>%
select(year:plot,
total_c_g_2:percent_n_2) %>%
rename("totC_g" = total_c_g_2,
"totN_g" = total_n_g_2,
"CN_ratio" = c_n_2,
"N_prct" = percent_n_2) %>%
mutate(organ = "stalk")
# cob tassle
ct14 <-
y14 %>%
select(year:plot,
total_c_g_3:percent_n_3) %>%
rename("totC_g" = total_c_g_3,
"totN_g" = total_n_g_3,
"CN_ratio" = c_n_3,
"N_prct" = percent_n_3) %>%
mutate(organ = "cobtassle")
# grain
g14 <-
y14 %>%
select(year:plot,
total_c_g_4:percent_n_4) %>%
rename("totC_g" = total_c_g_4,
"totN_g" = total_n_g_4,
"CN_ratio" = c_n_4,
"N_prct" = percent_n_4) %>%
mutate(organ = "grain")
CN14 <- bind_rows(p14, l14, s14, ct14, g14)
library(saapsim)
d14 <-
CN14 %>%
left_join(m14) %>%
select(year, doy, plot, organ, mass_g, everything(), -date) %>%
rowwise() %>%
mutate(date = saf_doy_to_date(mydoy = doy, myyear = 2014)) #--year was wrong in date in september
# write it ----------------------------------------------------------------
mrs_cornbio_wo <-
rbind(d13, d14) %>%
left_join(pk) %>%
select(year, date, doy, plot_id, organ, mass_g, totC_g, totN_g, CN_ratio, N_prct)
mrs_cornbio_wo %>%
ggplot(aes(doy, mass_g, color = organ)) +
geom_point() +
facet_grid(.~year)
mrs_cornbio_wo %>% write_csv("data-raw/cornbio_wo/cornbio_wo.csv")
usethis::use_data(mrs_cornbio_wo, overwrite = T)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.