#########################
# created: april 20 2020
#
# last updated:
#
# purpose: Process root dist data from 2019 ML exp
#
# NOTES:
#
#########################
##### Clear environment and load packages #####
rm(list = ls())
library(tidyverse)
library(lubridate)
library(readxl) #--used to read Excel files
library(janitor) #--used to clean data
pk <- read_csv("data-raw/plotkey/plotkey.csv") %>%
filter(year == 2019)
# 2019 --------------------------------------------------------------------
rd19raw <- read_excel("data-raw/rootdist_ml/2019 Marsden Farm Root Biomass Data single sheet.xlsx") %>%
clean_names()
dap19 <- read_excel("data-raw/rootdist_ml/DAP-to-date.xlsx") %>%
rename(days_after_planting = DAP) %>%
mutate(date = ymd(date))
# wrangle -----------------------------------------------------------------
rd19 <-
rd19raw %>%
left_join(dap19) %>%
mutate(year = year(date)) %>%
#--he specifies the side of the plot, doesn't matter for my purposes
mutate(plot = parse_number(plot)) %>%
left_join(pk)
rd19 %>%
mutate(depth = as.factor(depth)) %>%
ggplot(aes(fct_rev(depth), root_weights_g, color = harv_crop, group = harv_crop)) +
stat_summary(fun = "mean") +
stat_summary(fun = "mean", geom = "line") +
facet_grid(days_after_planting ~ .) +
coord_flip()
# write data ----------------------------------------------
mrs_rootdist_ml <-
rd19 %>%
arrange(year, date, plot_id, depth) %>%
select(date, plot_id, days_after_planting, depth,
total_soil_weight_g_4_subsamples_bulked,
root_weights_g, soil_volume_cm_3,
mass_volume_g_cm_3)
mrs_rootdist_ml %>% write_csv("data-raw/rootdist_ml/mrs_rootdist_ml.csv")
usethis::use_data(mrs_rootdist_ml, overwrite = T)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.