#########################
## Created Dec 19 2019
## Author Gina
## Purpose: Process ML stand counts.
## NOTES: Every year has to be done separately, nothing is consistent.
##
#########################
rm(list=ls())
library(tidyverse)
library(lubridate)
library(readxl) # used to read Excel files
library(janitor)
pk <- read_csv("data-raw/plotkey/plotkey.csv")
mperac <- 4046.86
# 2012 --------------------------------------------------------------------
o12 <- read_excel("data-raw/stand_counts/2012 std cnts - all crops.xlsx",
sheet = "2012 oats gn",
skip = 1) %>%
mutate(date = as_date("2012-04-23"),
year = year(date),
doy = yday(date)) %>%
left_join(pk) %>%
select(year, doy, plot_id, crop, pl_m2)
c12 <- read_excel("data-raw/stand_counts/2012 std cnts - all crops.xlsx",
sheet = "2012 Corn",
skip = 6) %>%
clean_names() %>%
select(plot, mean, plants_acre_1) %>%
filter(!is.na(mean)) %>%
fill(plot) %>%
mutate(date = as_date("2012-05-24"),
year = year(date),
doy = yday(date),
plot = as.numeric(plot),
crop = "corn",
pl_m2 = plants_acre_1 / mperac) %>%
left_join(pk) %>%
select(year, doy, plot_id, crop, pl_m2)
s12 <- read_excel("data-raw/stand_counts/2012 std cnts - all crops.xlsx",
sheet = "2012 SB",
skip = 6) %>%
clean_names() %>%
select(plot, mean, plants_acre_1) %>%
filter(!is.na(mean)) %>%
fill(plot) %>%
mutate(date = as_date("2012-06-01"),
year = year(date),
doy = yday(date),
plot = as.numeric(plot),
crop = "soy",
pl_m2 = plants_acre_1 / mperac) %>%
left_join(pk) %>%
select(year, doy, plot_id, crop, pl_m2)
# 2013 --------------------------------------------------------------------
o13 <- read_excel("data-raw/stand_counts/2013 std cnts - all crops.xlsx",
sheet = "2013 oats gn") %>%
mutate(year = year(date),
doy = yday(date)) %>%
left_join(pk) %>%
select(year, doy, plot_id, crop, pl_m2)
c13 <- read_excel("data-raw/stand_counts/2013 std cnts - all crops.xlsx",
sheet = "2013 Corn - Table 1",
skip = 6) %>%
clean_names() %>%
select(plot, mean, plants_acre_1) %>%
filter(!is.na(mean)) %>%
fill(plot) %>%
mutate(date = as_date("2013-06-06"),
year = year(date),
doy = yday(date),
plot = as.numeric(plot),
crop = "corn",
pl_m2 = plants_acre_1 / mperac) %>%
left_join(pk) %>%
group_by(year, doy, plot_id, crop) %>%
summarise(pl_m2 = mean(pl_m2, na.rm = T))
s13 <- read_excel("data-raw/stand_counts/2013 std cnts - all crops.xlsx",
sheet = "2013 SB - Table 1",
skip = 6) %>%
clean_names() %>%
select(plot, mean, plants_acre_1) %>%
filter(!is.na(mean)) %>%
fill(plot) %>%
mutate(date = as_date("2013-07-19"),
year = year(date),
doy = yday(date),
plot = as.numeric(plot),
crop = "soy",
pl_m2 = plants_acre_1 / mperac) %>%
left_join(pk) %>%
group_by(year, doy, plot_id, crop) %>%
summarise(pl_m2 = mean(pl_m2, na.rm = T))
# 2014 --------------------------------------------------------------------
c14 <- read_excel("data-raw/stand_counts/2014 std cnts - corn.xlsx",
skip = 6) %>%
clean_names() %>%
select(plot, mean, plants_acre_1) %>%
filter(!is.na(mean)) %>%
fill(plot) %>%
mutate(date = as_date("2014-06-05"),
year = year(date),
doy = yday(date),
plot = as.numeric(plot),
crop = "corn",
pl_m2 = plants_acre_1 / mperac) %>%
left_join(pk) %>%
group_by(year, doy, plot_id, crop) %>%
summarise(pl_m2 = mean(pl_m2, na.rm = T))
# 2015 --------------------------------------------------------------------
o15 <- read_excel("data-raw/stand_counts/2005-2016 std cnts oat legume.xlsx",
sheet = "2015") %>%
mutate(date = as_date("2015-06-01"), #--unknown, made this up
year = year(date),
doy = yday(date)) %>%
left_join(pk) %>%
select(year, doy, plot_id, crop, pl_m2)
c15 <- read_excel("data-raw/stand_counts/2015 std cnts - corn soy.xlsx",
sheet = "2015 Corn",
skip = 7) %>%
clean_names() %>%
select(plot, mean, plants_acre) %>%
filter(!is.na(mean)) %>%
fill(plot) %>%
mutate(date = as_date("2014-06-05"),
year = year(date),
doy = yday(date),
plot = as.numeric(plot),
crop = "corn",
pl_m2 = plants_acre / mperac) %>%
left_join(pk) %>%
group_by(year, doy, plot_id, crop) %>%
summarise(pl_m2 = mean(pl_m2, na.rm = T))
s15 <- read_excel("data-raw/stand_counts/2015 std cnts - corn soy.xlsx",
sheet = "2015 Soybean",
skip = 7) %>%
clean_names() %>%
select(plot, mean, plants_acre) %>%
filter(!is.na(mean)) %>%
fill(plot) %>%
mutate(date = as_date("2014-07-08"),
year = year(date),
doy = yday(date),
plot = as.numeric(plot),
crop = "soy",
pl_m2 = plants_acre / mperac) %>%
left_join(pk) %>%
group_by(year, doy, plot_id, crop) %>%
summarise(pl_m2 = mean(pl_m2, na.rm = T))
# 2016 --------------------------------------------------------------------
o16 <- read_excel("data-raw/stand_counts/2005-2016 std cnts oat legume.xlsx",
sheet = "2016") %>%
mutate(date = as_date("2016-06-01"), #--unknown, made this up
year = year(date),
doy = yday(date)) %>%
left_join(pk) %>%
select(year, doy, plot_id, crop, pl_m2)
c16 <- read_excel("data-raw/stand_counts/2016 std cnts - corn soy.xlsx",
sheet = "2016 Corn",
skip = 7) %>%
clean_names() %>%
select(plot, mean, plants_acre) %>%
filter(!is.na(mean)) %>%
fill(plot) %>%
mutate(date = as_date("2014-06-23"),
year = year(date),
doy = yday(date),
plot = as.numeric(plot),
crop = "corn",
pl_m2 = plants_acre / mperac) %>%
left_join(pk) %>%
filter(!is.na(plot_id)) %>% #--it's just a thing bc of Matt's arrangement
group_by(year, doy, plot_id, crop) %>%
summarise(pl_m2 = mean(pl_m2, na.rm = T))
s16 <- read_excel("data-raw/stand_counts/2016 std cnts - corn soy.xlsx",
sheet = "2016 Soybean",
skip = 7) %>%
clean_names() %>%
select(plot, mean, plants_acre) %>%
filter(!is.na(mean)) %>%
fill(plot) %>%
mutate(date = as_date("2014-06-29"),
year = year(date),
doy = yday(date),
plot = as.numeric(plot),
crop = "soy",
pl_m2 = plants_acre / mperac) %>%
left_join(pk) %>%
group_by(year, doy, plot_id, crop) %>%
summarise(pl_m2 = mean(pl_m2, na.rm = T))
# 2017 --------------------------------------------------------------------
#ugh this is too much work
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.