dataX <- read.table("lme4qtl_data.csv", sep=",", dec=".", header=TRUE, skipNul = TRUE)
library(ape)
tree <- read.nexus("tree_all.tre")
phylo_all <- vcv.phylo(tree, cor = T)
library(coxme)
m_lmekin <- lmekin(variable ~ mass*habitat + (1|species)+(1|site), data=dataX,
varlist=phylo_all, method = "REML")
print(m_lmekin)
# lmekin produces a low SE for mass:
#
# Value Std Error z p
# mass 0.1682963 0.05734047 2.94 3.3e-03
# mass:habitatU -0.1192794 0.02719739 -4.39 1.2e-05
library(lme4qtl)
m_lme4qtl <- relmatLmer(variable ~ mass*habitat + (1|species)+(1|site), data=dataX,
relmat = list(species = phylo_all), REML = T)
summary(m_lme4qtl)
# lme4qtl produces a much higher estimate and SE for mass:
# Estimate Std. Error t value
# mass 0.38195 0.15330 2.491
# mass:habitatU -0.12362 0.02711 -4.561
library(visreg)
# CI bands for mass are very wide even though the model indicates a signficant interaction:
visreg(m_lme4qtl, "mass", "habitat", overlay=F, partial=T, band=T, xlab="centered and scaled log10(mass)")
# testing without species phylogeny
m_nophylo <- relmatLmer(variable ~ mass*habitat + (1|species)+(1|site), data=dataX, REML = T)
summary(m_nophylo)
visreg(m_nophylo, "mass", "habitat", overlay=F, partial=T, band=T, xlab="centered and scaled log10(mass)")
# without phylogeny the estimate and SE are similar to lmekin
#
# Estimate Std. Error t value
# mass 0.11821 0.06049 1.954
# mass:habitatU -0.12054 0.02711 -4.446
# Why do lmekin and relmatLmer produce such different outputs for the parameters of body mass?
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.