Description Usage Arguments Value Examples
Trains the model according to training data x, where x is assumed to follow the Poisson-Dirichlet distribution, and discrete labels y.
1 | SPEC.fit(x, y)
|
x |
data vector, or matrix with rows as data points and columns as features. |
y |
training data label vector of length equal to the amount of rows in |
Returns an object used as training data objects for the classification
algorithms tMarLab
and tSimLab
.
If x
is multidimensional, each list described below is returned for each dimension.
Returns a list of classwise lists, each with components:
frequencies
: the frequencies of values in the class.
psi
: the Maximum Likelihood estimate for ψ for the class.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 | ## Create training data x and its class labels y from Poisson-Dirichlet distributions
## with different psis:
set.seed(111)
x1<-rPD(5000,10)
x2<-rPD(5000,100)
x<-c(x1,x2)
y1<-rep("1", 5000)
y2<-rep("2", 5000)
y<-c(y1,y2)
fit<-SPEC.fit(x,y)
## With multidimensional x:
set.seed(111)
x1<-cbind(rPD(5000,10),rPD(5000,50))
x2<-cbind(rPD(5000,100),rPD(5000,500))
x<-rbind(x1,x2)
y1<-rep("1", 5000)
y2<-rep("2", 5000)
y<-c(y1,y2)
fit<-SPEC.fit(x,y)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.