View source: R/cplot_extract.R
Generic extracts model information for use by 'cplot'
Internal function to extract data for 'cplot'
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 | ## S3 method for class 'clm'
cplot_extract(
object,
data,
dx,
level,
xvar,
at,
n,
type,
xvals,
vcov,
what,
zvar,
zvals,
...
)
cplot_extract(object, ...)
## Default S3 method:
cplot_extract(
object,
data,
dx,
level,
xvar,
zvar,
xvals,
zvals,
at,
n,
type,
vcov,
what,
...
)
## S3 method for class 'glm'
cplot_extract(
object,
data,
dx,
level,
xvar,
zvar,
xvals,
zvals,
at,
n,
type,
vcov,
what,
...
)
## S3 method for class 'lm'
cplot_extract(
object,
data,
dx,
level,
xvar,
zvar,
xvals,
zvals,
at,
n,
type,
vcov,
what,
...
)
## S3 method for class 'loess'
cplot_extract(
object,
data,
dx,
level,
xvar,
zvar,
xvals,
zvals,
at,
n,
type,
vcov,
what,
...
)
## S3 method for class 'polr'
cplot_extract(
object,
data,
dx,
level,
xvar,
at,
n,
type,
xvals,
vcov,
what = c("prediction", "classprediction", "stackedprediction", "effect"),
zvar,
zvals,
...
)
## S3 method for class 'multinom'
cplot_extract(
object,
data,
dx,
level,
xvar,
at,
n,
type,
xvals,
vcov,
what = c("prediction", "classprediction", "stackedprediction", "effect"),
zvar,
zvals,
...
)
|
object |
A statistical model object |
data |
data.frame over which to calculate individual marginal effects or predictions |
dx |
The name of the variable whose effect should be plotted |
level |
The confidence level required (used to draw uncertainty bounds). |
xvar |
The name of the variable to show on the x-axis |
at |
Currently ignored. |
n |
An integer specifying the number of points across |
type |
'response' or 'link' |
xvals |
A numeric vector of values at which to calculate predictions or
marginal effects, if |
vcov |
the variance-covariance matrix used to calculate confidence intervals |
what |
The quantity to plot: 'prediction', 'effect', 'classprediction', or 'stackedprediction' |
zvar |
name of the third dimension variable over which quantities should be plotted (as facets). |
zvals |
discrete values of the z variable over which to plot |
... |
Additional arguments such as |
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.