View source: R/mppGE_CIM_fast.R
mppGE_CIM_fast | R Documentation |
Computes a multi QTL models along the genome using different models. Add extra elements to provide more information about the procedure. The initial mixed are calculated with functions from the nlme package.
mppGE_CIM_fast( mppData, trait, Q.eff = "cr", VCOV = "UN", cofactors = NULL, window = 20, n.cores = 1, maxIter = 100, msMaxIter = 100 )
mppData |
An object of class |
trait |
|
Q.eff |
|
VCOV |
VCOV |
cofactors |
Object of class |
window |
|
n.cores |
|
maxIter |
maximum number of iterations for the lme optimization algorithm. Default = 100. |
msMaxIter |
maximum number of iterations for the optimization step inside the lme optimization. Default = 100. |
Return:
CIM |
|
Vincent Garin
Pinheiro J, Bates D, DebRoy S, Sarkar D, R Core Team (2021). nlme: Linear and Nonlinear Mixed Effects Models_. R package version 3.1-152, <URL: https://CRAN.R-project.org/package=nlme>.
mppGE_SIM_fast
library(mppR) data(mppData_GE) cofactors <- mppData_GE$map$mk.names[c(35, 61)] CIM <- mppGE_CIM_fast(mppData = mppData_GE, trait = c('DMY_CIAM', 'DMY_TUM'), Q.eff = 'par') Qpos <- QTL_select(Qprof = CIM, threshold = 3, window = 50) plot.QTLprof(x = CIM, QTL = Qpos) plot_genEffects_GE(mppData = mppData_GE, nEnv = 2, EnvNames = c('CIAM', 'TUM'), Qprof = CIM, Q.eff = 'par', QTL = Qpos, text.size = 14)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.