Description Usage Arguments Details Value Author(s) References Examples
View source: R/mv.calout.detect.R
interface to a parametric multivariate outlier detection algorithm
1 2 3 | mv.calout.detect(x, k = min(floor((nrow(x) - 1)/2), 100), Ci = C.unstr,
lamfun = lams.unstr, alpha = 0.05, method = c("parametric",
"rocke", "kosinski.raw", "kosinski.exch")[1], ...)
|
x |
data matrix |
k |
upper bound on number of outliers; defaults to just less than half the sample size |
Ci |
function computing Ci, the covariance determinant ratio
excluding row i. At present, sole
option is |
lamfun |
function computing lambda, the critical values for Ci |
alpha |
false outlier labeling rate |
method |
string identifying algorithm to use |
... |
reserved for future use |
bushfire is a dataset distributed by Kosinski to illustrate his method.
a list with components
inds |
indices of outlying rows |
vals |
values of outlying rows |
k |
input parameter k |
alpha |
input parameter alpha |
VJ Carey
C. Caroni and P. Prescott, Journal of the Royal Statistical Society. Series C (Applied Statistics), Vol. 41, No. 2 (1992), pp. 355-364
1 2 3 4 |
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.