lmomTLgpa | R Documentation |
This function estimates the symmetrical trimmed L-moments (TL-moments) for t=1
of the Generalized Pareto distribution given the parameters (\xi
, \alpha
, and \kappa
) from parTLgpa
.
The TL-moments in terms of the parameters are
\lambda^{(1)}_1 = \xi + \frac{\alpha(\kappa+5)}{(\kappa+3)(\kappa+2)} \mbox{,}
\lambda^{(1)}_2 = \frac{6\alpha}{(\kappa+4)(\kappa+3)(\kappa+2)} \mbox{,}
\tau^{(1)}_3 = \frac{10(1-\kappa)}{9(\kappa+5)} \mbox{, and}
\tau^{(1)}_4 = \frac{5(\kappa-1)(\kappa-2)}{4(\kappa+6)(\kappa+5)} \mbox{.}
lmomTLgpa(para)
para |
The parameters of the distribution. |
An R list
is returned.
lambdas |
Vector of the trimmed L-moments. First element is
|
ratios |
Vector of the L-moment ratios. Second element is
|
trim |
Level of symmetrical trimming used in the computation, which is unity. |
leftrim |
Level of left-tail trimming used in the computation, which is unity. |
rightrim |
Level of right-tail trimming used in the computation, which is unity. |
source |
An attribute identifying the computational source of the TL-moments: “lmomTLgpa”. |
W.H. Asquith
Elamir, E.A.H., and Seheult, A.H., 2003, Trimmed L-moments: Computational Statistics and Data Analysis, v. 43, pp. 299–314.
lmomgpa
, parTLgpa
, cdfgpa
, pdfgpa
, quagpa
TL <- TLmoms(c(123,34,4,654,37,78,21,3400),trim=1)
TL
lmomTLgpa(parTLgpa(TL))
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.