lmomcau | R Documentation |
This function estimates the trimmed L-moments of the Cauchy distribution given the parameters (\xi
and \alpha
) from parcau
. The trimmed L-moments in terms of the parameters are \lambda^{(1)}_1 = \xi
,
\lambda^{(1)}_2 = 0.69782723\alpha
, \tau^{(1)}_{3, 5, \cdots} = 0
, \tau^{(1)}_4 = 0.34280842
, and \tau^{(1)}_6 = 0.20274358
. These TL-moments (trim=1) are symmetrical for the first L-moments defined because \mathrm{E}[X_{1:n}]
and \mathrm{E}[X_{n:n}]
undefined expectations for the Cauchy.
lmomcau(para)
para |
The parameters of the distribution. |
An R list
is returned.
lambdas |
Vector of the trimmed L-moments. First element is
|
ratios |
Vector of the L-moment ratios. Second element is
|
trim |
Level of symmetrical trimming used in the computation, which is unity. |
leftrim |
Level of left-tail trimming used in the computation, which is unity. |
rightrim |
Level of right-tail trimming used in the computation, which is unity. |
source |
An attribute identifying the computational source of the L-moments: “lmomcau”. |
W.H. Asquith
Asquith, W.H., 2011, Distributional analysis with L-moment statistics using the R environment for statistical computing: Createspace Independent Publishing Platform, ISBN 978–146350841–8.
Elamir, E.A.H., and Seheult, A.H., 2003, Trimmed L-moments: Computational Statistics and Data Analysis, v. 43, pp. 299–314.
parcau
, cdfcau
, pdfcau
, quacau
X1 <- rcauchy(20)
lmomcau( parcau( TLmoms(X1, trim=1) ) )
alpha <- 30
tlmr <- theoTLmoms(vec2par(c(100, alpha), type="cau"), nmom=6, trim=1)
print( c(tlmr$lambdas[2] / alpha, tlmr$ratios[c(4,6)]), 8 )
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.