lmomray | R Documentation |
This function estimates the L-moments of the Rayleigh distribution given the parameters (\xi
and \alpha
) from parray
. The L-moments in terms of the parameters are
\lambda_1 = \xi + \alpha\sqrt{\pi/2} \mbox{,}
\lambda_2 = \frac{1}{2} \alpha(\sqrt{2} - 1)\sqrt{\pi}\mbox{,}
\tau_3 = \frac{1 - 3/\sqrt{2} + 2/\sqrt{3}}{1 - 1/\sqrt{2}} = 0.1140 \mbox{, and}
\tau_4 = \frac{1 - 6/\sqrt{2} + 10/\sqrt{3} - 5\sqrt{4}}{1 - 1/\sqrt{2}} = 0.1054 \mbox{.}
lmomray(para)
para |
The parameters of the distribution. |
An R list
is returned.
lambdas |
Vector of the L-moments. First element is
|
ratios |
Vector of the L-moment ratios. Second element is
|
trim |
Level of symmetrical trimming used in the computation, which is |
leftrim |
Level of left-tail trimming used in the computation, which is |
rightrim |
Level of right-tail trimming used in the computation, which is |
source |
An attribute identifying the computational source of the L-moments: “lmomray”. |
W.H. Asquith
Hosking, J.R.M., 1986, The theory of probability weighted moments: Research Report RC12210, IBM Research Division, Yorkton Heights, N.Y.
parray
, cdfray
, pdfray
, quaray
lmr <- lmoms(c(123,34,4,654,37,78))
lmr
lmomray(parray(lmr))
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.