lmomsmd | R Documentation |
This function computes the L-moments of the Singh–Maddala (Burr Type XII) distribution given the parameters (\xi
, a
, b
, and q
) from parsmd
. The first L-moment (\lambda_1
) for b' = 1/b
and R = a\Gamma(1 + b')
is
\lambda_1 = R\times\biggl[\frac{a\Gamma(1q-b')}{\Gamma(1q)}\biggr] + \xi\mbox{.}
The second L-moment (\lambda_2
) is
\lambda_2 = R\times\biggl[\frac{1\Gamma(1q - b')}{\Gamma(1q)} -
\frac{1\Gamma(2q - b')}{\Gamma(2q)}\biggr]\mbox{.}
The third L-moment (\lambda_3
) is
\lambda_3 = R\times\biggl[\frac{1\Gamma(1q - b')}{\Gamma(1q)} -
\frac{3\Gamma(2q - b')}{\Gamma(2q)} +
\frac{2\Gamma(3q - b')}{\Gamma(3q)}\biggr]\mbox{.}
The fourth L-moment (\lambda_4
) is
\lambda_4 = R\times\biggl[\frac{ 1\Gamma(1q - b')}{\Gamma(1q)} -
\frac{ 6\Gamma(2q - b')}{\Gamma(2q)} +
\frac{10\Gamma(3q - b')}{\Gamma(3q)} -
\frac{ 5\Gamma(4q - b')}{\Gamma(4q)}\biggr]\mbox{.}
The fifth L-moment (\lambda_5
) (unique to lmomco development) is
\lambda_5 = R\times\biggl[\frac{ 1\Gamma(1q - b')}{\Gamma(1q)} -
\frac{10\Gamma(2q - b')}{\Gamma(2q)} +
\frac{30\Gamma(3q - b')}{\Gamma(3q)} -
\frac{35\Gamma(4q - b')}{\Gamma(4q)} +
\frac{14\Gamma(5q - b')}{\Gamma(5q)}\biggr]\mbox{.}
The sixth L-moment (\lambda_6
) (unique to lmomco development) is
\lambda_6 = R\times\biggl[\frac{ 1\Gamma(1q - b')}{\Gamma(1q)} -
\frac{ 15\Gamma(2q - b')}{\Gamma(2q)} +
\frac{ 70\Gamma(3q - b')}{\Gamma(3q)} -
\frac{140\Gamma(4q - b')}{\Gamma(4q)} +
\frac{126\Gamma(5q - b')}{\Gamma(5q)} -
\frac{ 42\Gamma(6q - b')}{\Gamma(6q)}\biggr]\mbox{.}
lmomsmd(para)
para |
The parameters of the distribution. |
An R list
is returned.
lambdas |
Vector of the L-moments. First element is
|
ratios |
Vector of the L-moment ratios. Second element is
|
trim |
Level of symmetrical trimming used in the computation, which is |
leftrim |
Level of left-tail trimming used in the computation, which is |
rightrim |
Level of right-tail trimming used in the computation, which is |
source |
An attribute identifying the computational source of the L-moments: “lmomsmd”. |
W.H. Asquith
Bhatti, F.A., Hamedani, G.G., Korkmaz, M.C., and Munir Ahmad, M., 2019, New modified Singh–Maddala distribution—Development, properties, characterizations, and applications: Journal of Data Science, v. 17, no. 3, pp. 551–574, \Sexpr[results=rd]{tools:::Rd_expr_doi("10.6339/JDS.201907_17(3).0006")}.
Shahzad, M.N., and Zahid, A., 2013, Parameter estimation of Singh Maddala distribution by moments: International Journal of Advanced Statistics and Probability, v. 1, no. 3, pp. 121–131, \Sexpr[results=rd]{tools:::Rd_expr_doi("10.14419/ijasp.v1i3.1206")}.
parsmd
, cdfsmd
, pdfsmd
, quasmd
lmr <- lmoms(c(123, 34, 4, 654, 37, 78), nmom=6)
lmr$source <- lmr$trim <- lmr$leftrim <- lmr$rightrim <-NULL
# The parsmd() reports Tau4 is too big and snaps it to an empirical boundary.
# "Tau4(~Tau3) snapped to upper limit, Tau4=0.65483 for Tau3=0.75126"
bmr <- lmomsmd(parsmd(lmr, snap.tau4=TRUE))
dmr <- data.frame(bmr$lambdas, bmr$ratios)
cbind(as.data.frame(lmr), dmr) # See in table that row 4 has different Tau4s
# lambdas ratios bmr.lambdas bmr.ratios
# 1 155.0 NA 155.00000 NA
# 2 118.6 0.7651613 118.60000 0.7651613
# 3 89.1 0.7512648 89.18739 0.7520016
# 4 82.1 0.6922428 77.59904 0.6542921 # see different Tau4s (snapping)
# 5 69.5 0.5860034 68.40150 0.5767411 # We are not fitting to these
# 6 102.5 0.8642496 62.58792 0.5277228 # higher L-moments.
# T3 and T4 of the Gumbel distribution, which is inside the SMD domain.
gumt3t4 <- c(log(9/8)/log(2), (16 * log(2) - 10 * log(3))/log(2))
lmr <- theoLmoms(pargum(vec2lmom(c(155, 118.6, gumt3t4))), nmom=6)
lmr$source <- lmr$trim <- lmr$leftrim <- lmr$rightrim <-NULL
bmr <- lmomsmd(parsmd(lmr, snap.tau4=TRUE))
dmr <- data.frame(bmr$lambdas, bmr$ratios)
cbind(as.data.frame(lmr), dmr)
# lambdas ratios bmr.lambdas bmr.ratios
# 1 155.000000 NA 155.000000 NA
# 2 118.600005 0.76516132 118.600005 0.7651613
# 3 20.153103 0.16992498 20.153104 0.1699250
# 4 17.834464 0.15037490 17.834464 0.1503749 # see same Tau4s (no snapping)
# 5 6.625972 0.05586823 7.688957 0.0648310 # We are not fitting to these
# 6 6.891842 0.05810997 7.213039 0.0608182 # higher L-moments.
## Not run:
# T3 and T4 of the Gumbel distribution, which is inside the SMD domain.
gumt3t4 <- c(log(9/8)/log(2), (16 * log(2) - 10 * log(3))/log(2))
FF <- nonexceeds(); qFF <- qnorm(FF)
gumx <- qlmomco(FF, pargum(vec2lmom(c(155, 118.6, gumt3t4))))
smdx <- qlmomco(FF, parsmd(lmr, snap.tau4=TRUE))
plot( qFF, gumx, col="blue", type="l",
xlab="Standard normal variate", ylab="Quantile")
lines(qFF, smdx, col="red") #
## End(Not run)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.