pdfkmu | R Documentation |
This function computes the probability density
of the Kappa-Mu (\kappa:\mu
) distribution given parameters (\kappa
and \mu
) computed by parkmu
. The probability density function is
f(x) = \frac{2\mu(1+\kappa)^{(\mu + 1)/2}}{\kappa^{(\mu-1)/2}\mathrm{exp}(\mu\kappa)}\,x^\mu\,\exp(-\mu(1+\kappa)x^2)\,I_{\mu - 1}(2\mu\sqrt{\kappa(1+\kappa)}x)\mbox{,}
where f(x)
is the nonexceedance probability for quantile x
, and the modified Bessel function of the first kind is I_k(x)
, and define m
as
m = \frac{\mu(1+\kappa)^2}{1+2\kappa}\mbox{.}
and for a given m
, the new parameter \mu
must lie in the range
0 \le \mu \le m\mbox{.}
The definition of I_k(x)
is seen under pdfemu
. Lastly, if \kappa = \infty
, then there is a Dirca Delta function of probability at x=0
.
pdfkmu(x, para, paracheck=TRUE)
x |
A real value vector. |
para |
The parameters from |
paracheck |
A logical controlling whether the parameters and checked for validity. |
Probability density (f
) for x
.
W.H. Asquith
Yacoub, M.D., 2007, The kappa-mu distribution and the eta-mu distribution: IEEE Antennas and Propagation Magazine, v. 49, no. 1, pp. 68–81
cdfkmu
, quakmu
, lmomkmu
, parkmu
## Not run:
x <- seq(0,4, by=.1)
para <- vec2par(c(.5, 1.4), type="kmu")
F <- cdfkmu(x, para)
X <- quakmu(F, para, quahi=pi)
plot(F, X, type="l", lwd=8)
lines(F, x, col=2)
## End(Not run)
## Not run:
# Note that in this example very delicate steps are taken to show
# how one interacts with the Dirac Delta function (x=0) when the m
# is known but mu == 0. For x=0, the fraction of total probability
# is recorded, but when one is doing numerical summation to evaluate
# whether the total probability under the PDF is unity some algebraic
# manipulations are needed as shown for the conditional when kappa
# is infinity.
delx <- 0.001
x <- seq(0,3, by=delx)
plot(c(0,3), c(0,1), xlab="RHO", ylab="pdfkmu(RHO)", type="n")
m <- 1.25
mus <- c(0.25, 0.50, 0.75, 1, 1.25, 0)
for(mu in mus) {
kappa <- m/mu - 1 + sqrt((m/mu)*((m/mu)-1))
para <- vec2par(c(kappa, mu), type="kmu")
if(! is.finite(kappa)) {
para <- vec2par(c(Inf,m), type="kmu")
density <- pdfkmu(x, para)
lines(x, density, col=2, lwd=3)
dirac <- 1/delx - sum(density[x != 0])
cumulant <- (sum(density) + density[1]*(1/delx - 1))*delx
density[x == 0] <- rep(dirac, length(density[x == 0]))
message("Total integrated probability is ", cumulant, "\n")
}
lines(x, pdfkmu(x, para))
}
mtext("Yacoub (2007, figure 3)")
## End(Not run)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.