pdfst3 | R Documentation |
This function computes the probability density of the 3-parameter Student t distribution given parameters (\xi
, \alpha
, \nu
) computed by parst3
. The probability density function is
f(x) = \frac{\Gamma(\frac{1}{2} + \frac{1}{2}\nu)}{\alpha\nu^{1/2}\,\Gamma(\frac{1}{2})\Gamma(\frac{1}{2}\nu)}(1+t^2/\nu)^{-(\nu+1)/2}\mbox{,}
where f(x)
is the probability density for quantile x
, t
is defined as t = (x - \xi)/\alpha
, \xi
is a location parameter, \alpha
is a scale parameter, and \nu
is a shape parameter in terms of the degrees of freedom as for the more familiar Student t distribution in R.
For value X
, the built-in R functions can be used. For U
= \xi
and A
=\alpha
for 1.001 \le \nu \le 10^5.5
, one can use dt((X-U)/A, N)/A
for N
=\nu
. The R function dt
is used for the 1-parameter Student t density. The limits for \nu
stem from study of ability for theoretical integration of the quantile function to produce viable \tau_4
and \tau_6
(see inst/doc/t4t6/studyST3.R
).
pdfst3(x, para, paracheck=TRUE)
x |
A real value vector. |
para |
The parameters from |
paracheck |
A logical on whether the parameter should be check for validity. |
Probability density (f
) for x
.
W.H. Asquith
Asquith, W.H., 2011, Distributional analysis with L-moment statistics using the R environment for statistical computing: Createspace Independent Publishing Platform, ISBN 978–146350841–8.
cdfst3
, quast3
, lmomst3
, parst3
## Not run:
xs <- -200:200
para <- vec2par(c(37, 25, 114), type="st3")
plot(xs, pdfst3(xs, para), type="l")
para <- vec2par(c(11, 36, 1000), type="st3")
lines(xs, pdfst3(xs, para), lty=2)
para <- vec2par(c(-7, 60, 40), type="st3")
lines(xs, pdfst3(xs, para), lty=3)
## End(Not run)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.