quaemu: Quantile Function of the Eta-Mu Distribution

quaemuR Documentation

Quantile Function of the Eta-Mu Distribution

Description

This function computes the quantiles of the Eta-Mu (\eta:\mu) distribution given \eta and \mu) computed by paremu. The quantile function is complex and numerical rooting of the cumulative distribution function (cdfemu) is used.

Usage

quaemu(f, para, paracheck=TRUE, yacoubsintegral=TRUE, eps=1e-7)

Arguments

f

Nonexceedance probability (0 \le F \le 1).

para

The parameters from paremu or vec2par.

paracheck

A logical controlling whether the parameters are checked for validity. Overriding of this check might be extremely important and needed for use of the quantile function in the context of TL-moments with nonzero trimming.

yacoubsintegral

A logical controlling whether the integral by Yacoub (2007) is used for the cumulative distribution function instead of numerical integration of pdfemu.

eps

A close-enough error term for the recursion process.

Value

Quantile value for nonexceedance probability F.

Author(s)

W.H. Asquith

References

Yacoub, M.D., 2007, The kappa-mu distribution and the eta-mu distribution: IEEE Antennas and Propagation Magazine, v. 49, no. 1, pp. 68–81

See Also

cdfemu, pdfemu, lmomemu, paremu

Examples

## Not run: 
quaemu(0.75,vec2par(c(0.9, 1.5), type="emu")) #
## End(Not run)

wasquith/lmomco documentation built on Nov. 13, 2024, 4:53 p.m.