quaray: Quantile Function of the Rayleigh Distribution

quarayR Documentation

Quantile Function of the Rayleigh Distribution

Description

This function computes the quantiles of the Rayleigh distribution given parameters (\xi and \alpha) computed by parray. The quantile function is

x(F) = \xi + \sqrt{-2\alpha^2\log(1-F)} \mbox{,}

where x(F) is the quantile for nonexceedance probability F, \xi is a location parameter, and \alpha is a scale parameter.

Usage

quaray(f, para, paracheck=TRUE)

Arguments

f

Nonexceedance probability (0 \le F \le 1).

para

The parameters from parray or vec2par.

paracheck

A logical controlling whether the parameters are checked for validity. Overriding of this check might be extremely important and needed for use of the quantile function in the context of TL-moments with nonzero trimming.

Value

Quantile value for nonexceedance probability F.

Author(s)

W.H. Asquith

References

Hosking, J.R.M., 1986, The theory of probability weighted moments: Research Report RC12210, IBM Research Division, Yorkton Heights, N.Y.

See Also

cdfray, pdfray, lmomray, parray

Examples

  lmr <- lmoms(c(123,34,4,654,37,78))
  quaray(0.5,parray(lmr))

wasquith/lmomco documentation built on Nov. 13, 2024, 4:53 p.m.