sen.mean | R Documentation |
The Sen weighted mean statistic \mathcal{S}_{n,k}
is a robust estimator of the mean of a distribution
\mathcal{S}_{n,k} = {n \choose 2k+1}^{-1} \sum_{i=1}^n {i - 1 \choose k} {n - i \choose k } x_{i:n}\mbox{,}
where x_{i:n}
are the sample order statistics and k
is a weighting or trimming parameter. If k = 2
, then the \mathcal{S}_{n,2}
is the first symmetrical TL-moment (trim = 1). Note that \mathcal{S}_{n,0} = \mu = \overline{X}_n
or the arithmetic mean
and \mathcal{S}_{n,k}
is the sample median
if either n
is even and k = (n/2) - 1
or n
is odd and k = (n-1)/2
.
sen.mean(x, k=0)
x |
A vector of data values that will be reduced to non-missing values. |
k |
A weighting or trimming parameter |
An R list
is returned.
sen |
The sen mean |
source |
An attribute identifying the computational source: “sen.mean”. |
W.H. Asquith
Jurečková, J., and Picek, J., 2006, Robust statistical methods with R: Boca Raton, Fla., Chapman and Hall/CRC, ISBN 1–58488–454–1, 197 p.
Sen, P.K., 1964, On some properties of the rank-weighted means: Journal Indian Society of Agricultural Statistics: v. 16, pp. 51–61.
TLmoms
, gini.mean.diff
fake.dat <- c(123, 34, 4, 654, 37, 78)
sen.mean(fake.dat); mean(fake.dat) # These should be the same values
sen.mean(fake.dat, k=(length(fake.dat)/2) - 1); median(fake.dat)
# Again, same values
# Finally, the sen.mean() is like a symmetrically trimmed TL-moment
# Let us demonstrate by computed a two sample trimming for each side
# for a Normal distribution having a mean of 100.
fake.dat <- rnorm(20, mean=100)
lmr <- TLmoms(fake.dat, trim=2)
sen <- sen.mean(fake.dat, k=2)
print(abs(lmr$lambdas[1] - sen$sen)) # zero is returned
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.