Description Usage Arguments Value See Also Examples
View source: R/predict.cv.PCLasso.R
Similar to other predict methods, this function returns predictions from a
fitted "cv.PCLasso" object, using the optimal value chosen for lambda
.
1 2 3 4 5 6 7 8 9 |
object |
Fitted |
x |
Matrix of values at which predictions are to be made. The features (genes)
contained in |
type |
Type of prediction: "link" returns the linear predictors; "response" gives the risk (i.e., exp(link)); "vars" returns the indices for the nonzero coefficients; "vars.unique" returns unique features (genes) with nonzero coefficients (If a feature belongs to multiple groups and multiple groups are selected, the feature will be repeatedly selected. Compared with "var", "var.unique" will filter out repeated features.); "groups" returns the groups with at least one nonzero coefficient; "nvars" returns the number of nonzero coefficients; "nvars.unique" returens the number of unique features (genes) with nonzero coefficients; "ngroups" returns the number of groups with at least one nonzero coefficient; "norm" returns the L2 norm of the coefficients in each group."survival" returns the estimated survival function; "median" estimates median survival times. |
lambda |
Values of the regularization parameter |
... |
Arguments to be passed to |
The object returned depends on type
.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 | # load data
data(GBM)
data(PCGroup)
cv.fit1 <- cv.PCLasso(x = GBM$GBM.train$Exp,
y = GBM$GBM.train$survData,
group = PCGroup,
nfolds = 5)
# predict risk scores of samples in x.test
s <- predict(object = cv.fit1, x = GBM$GBM.test$Exp, type="link",
lambda=cv.fit1$cv.fit$lambda.min)
# Nonzero coefficients
sel.groups <- predict(object = cv.fit1, type="groups",
lambda = cv.fit1$cv.fit$lambda.min)
sel.ngroups <- predict(object = cv.fit1, type="ngroups",
lambda = cv.fit1$cv.fit$lambda.min)
sel.vars.unique <- predict(object = cv.fit1, type="vars.unique",
lambda = cv.fit1$cv.fit$lambda.min)
sel.nvars.unique <- predict(object = cv.fit1, type="nvars.unique",
lambda = cv.fit1$cv.fit$lambda.min)
sel.vars <- predict(object = cv.fit1, type="vars",
lambda=cv.fit1$cv.fit$lambda.min)
sel.nvars <- predict(object = cv.fit1, type="nvars",
lambda=cv.fit1$cv.fit$lambda.min)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.