#2010 Bayesian Lasso
ebayes_EM<-function(x,z,y)
{
n<-nrow(z);k<-ncol(z)
if(abs(min(eigen(crossprod(x,x))$values))<1e-6)
b<-solve(crossprod(x,x)+diag(ncol(x))*0.01)%*%crossprod(x,y)
else
b<-solve(crossprod(x,x))%*%crossprod(x,y)
v0<-as.numeric(crossprod((y-x%*%b),(y-x%*%b))/n)
u<-matrix(rep(0,k),k,1)
v<-matrix(rep(0,k),k,1)
s<-matrix(rep(0,k),k,1)
for(i in 1:k)
{
zz<-z[,i]
s[i]<-((crossprod(zz,zz)+1e-100)^(-1))*v0
u[i]<-s[i]*crossprod(zz,(y-x%*%b))/v0
v[i]<-u[i]^2+s[i]
}
vv<-matrix(rep(0,n*n),n,n);
for(i in 1:k)
{
zz<-z[,i]
vv<-vv+tcrossprod(zz,zz)*v[i]
}
vv<-vv+diag(n)*v0
iter<-0;err<-1000;iter_max<-500;err_max<-1e-6
tau<-0;omega<-0
while((iter<iter_max)&&(err>err_max))
{
iter<-iter+1
v01<-v0
v1<-v
b1<-b
vi<-solve(vv)
xtv<-crossprod(x,vi)
if(ncol(x)==1)
{
b<-((xtv%*%x)^(-1))*(xtv%*%y)
}else
{
if(abs(min(eigen(xtv%*%x)$values))<1e-6){
b<-solve((xtv%*%x)+diag(ncol(x))*0.01)%*%(xtv%*%y)
}
else{
b<-solve(xtv%*%x)%*%(xtv%*%y)
}
}
r<-y-x%*%b
ss<-matrix(rep(0,n),n,1)
for(i in 1:k)
{
zz<-z[,i]
zztvi<-crossprod(zz,vi)
u[i]<-v[i]*zztvi%*%r
s[i]<-v[i]*(1-zztvi%*%zz*v[i])
v[i]<-(u[i]^2+s[i]+omega)/(tau+3)
ss<-ss+zz*u[i]
}
v0<-as.numeric(crossprod(r,(r-ss))/n)
vv<-matrix(rep(0,n*n),n,n)
for(i in 1:k)
{
zz<-z[,i]
vv<-vv+tcrossprod(zz,zz)*v[i]
}
vv<-vv+diag(n)*v0
err<-(crossprod((b1-b),(b1-b))+(v01-v0)^2+crossprod((v1-v),(v1-v)))/(2+k)
beta<-t(b)
sigma2<-v0
}
return (u)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.