Description Usage Arguments Value Author(s) References See Also Examples
Grow a rotation survival random forest
1 2  | 
x | 
 The covariates(predictor variables) of training data.  | 
y | 
 Survival time and censored status of training data. Must be a Surv    | 
trlength | 
 The ensemle size (the number of base ELM survival models). Default is 100.  | 
mtry | 
 The number of covariates(predictor variables) used in each base ELM model. Default is the square root of the number of all avaibable covariates.  | 
testx | 
 The covariates(predictor variables) of test data.  | 
Regularization_coefficient | 
 Ridge or Tikhonov regularization parameter. Default is 10000. Also known as C in the ELM paper.  | 
Kernel_type | 
 Type of kernel matrix. Currently four options avaibable. "RBF_kernel",a RBF kernel;"lin_kernel" , a linear kernel;poly_kernel ,a polynomial kernel;sigmoid_kernel, a sigmoid kernel. Default is "lin_kernel".  | 
Kernel_para | 
 Parameters for different types of kernels. A single value for RBF and linear kernels. A vector for polynomial and sigmoid kernels and progam stops if only a single value is supplied. However, if the vector of values is supplied in the cases of RBF and liner kernels, only the first value will be used. Default is a vector value "c(2,1)"  | 
Object of class ELMSurvEN with elements
elmsurvfit  |   A list of base models elm_surv of size trlength. To retrieve a particular base model: use  elmsurvfit[[i]], where i takes values between 1 and trlength  | 
precitedtime  | Esitmated survival times of test data. | 
Hong Wang
Zhou L, Xu Q, Wang H. (2015) Rotation survival forest for right censored data. PeerJ 3:e1009 https://doi.org/10.7717/peerj.1009.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21  | set.seed(123)
require(ELMSurv)
require(survival)
## Survival Ensemble of ELM  with default settings
#Lung DATA
data(lung)
lung=na.omit(lung)
lung[,3]=lung[,3]-1
n=dim(lung)[1]
L=sample(1:n,ceiling(n*0.5))
trset<-lung[L,]
teset<-lung[-L,]
rii=c(2,3)
elmsurvmodel=ELMSurvEN(x=trset[,-rii],y=Surv(trset[,rii[1]], trset[,rii[2]]),testx=teset[,-c(rii)])
testpretimes=elmsurvmodel$precitedtime
#The predicted survival times on the first test example
head(testpretimes[1,])
#The predicted survival times of all test examples by the third model
head(testpretimes[,3])
# Get the 1th base model
firstbasemodel=elmsurvmodel$elmsurvfit[[1]]
 | 
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.