View source: R/tar_rep_map_raw.R
tar_rep_map_raw | R Documentation |
tar_rep()
(raw; deprecated).Deprecated. Use tar_rep2_raw()
instead.
tar_rep_map_raw(
name,
command,
targets,
tidy_eval = targets::tar_option_get("tidy_eval"),
packages = targets::tar_option_get("packages"),
library = targets::tar_option_get("library"),
format = targets::tar_option_get("format"),
repository = targets::tar_option_get("repository"),
iteration = targets::tar_option_get("iteration"),
error = targets::tar_option_get("error"),
memory = targets::tar_option_get("memory"),
garbage_collection = targets::tar_option_get("garbage_collection"),
deployment = targets::tar_option_get("deployment"),
priority = targets::tar_option_get("priority"),
resources = targets::tar_option_get("resources"),
storage = targets::tar_option_get("storage"),
retrieval = targets::tar_option_get("retrieval"),
cue = targets::tar_option_get("cue"),
description = targets::tar_option_get("description")
)
name |
Symbol, name of the target.
In A target name must be a valid name for a symbol in R, and it
must not start with a dot. Subsequent targets
can refer to this name symbolically to induce a dependency relationship:
e.g. |
command |
R code to run the target.
In |
targets |
Character vector of names of upstream batched targets
created by |
tidy_eval |
Logical, whether to enable tidy evaluation
when interpreting |
packages |
Character vector of packages to load right before
the target runs or the output data is reloaded for
downstream targets. Use |
library |
Character vector of library paths to try
when loading |
format |
Optional storage format for the target's return value.
With the exception of |
repository |
Character of length 1, remote repository for target storage. Choices:
Note: if |
iteration |
Character of length 1, name of the iteration mode of the target. Choices:
|
error |
Character of length 1, what to do if the target stops and throws an error. Options:
|
memory |
Character of length 1, memory strategy. Possible values:
For cloud-based dynamic files
(e.g. |
garbage_collection |
Logical: |
deployment |
Character of length 1. If |
priority |
Numeric of length 1 between 0 and 1. Controls which
targets get deployed first when multiple competing targets are ready
simultaneously. Targets with priorities closer to 1 get dispatched earlier
(and polled earlier in |
resources |
Object returned by |
storage |
Character string to control when the output of the target
is saved to storage. Only relevant when using
|
retrieval |
Character string to control when the current target
loads its dependencies into memory before running.
(Here, a "dependency" is another target upstream that the current one
depends on.) Only relevant when using
|
cue |
An optional object from |
description |
Character of length 1, a custom free-form human-readable
text description of the target. Descriptions appear as target labels
in functions like |
Deprecated in version 0.4.0, 2021-12-06.
A new target object to perform batched computation
downstream of tar_rep()
.
See the "Target objects" section for background.
Most tarchetypes
functions are target factories,
which means they return target objects
or lists of target objects.
Target objects represent skippable steps of the analysis pipeline
as described at https://books.ropensci.org/targets/.
Please read the walkthrough at
https://books.ropensci.org/targets/walkthrough.html
to understand the role of target objects in analysis pipelines.
For developers, https://wlandau.github.io/targetopia/contributing.html#target-factories explains target factories (functions like this one which generate targets) and the design specification at https://books.ropensci.org/targets-design/ details the structure and composition of target objects.
Other branching:
tar_map2()
,
tar_map2_count()
,
tar_map2_size()
,
tar_map_rep()
,
tar_rep()
,
tar_rep2()
,
tar_rep_map()
if (identical(Sys.getenv("TAR_LONG_EXAMPLES"), "true")) {
targets::tar_dir({ # tar_dir() runs code from a temporary directory.
targets::tar_script({
list(
tarchetypes::tar_rep(
data1,
data.frame(value = rnorm(1)),
batches = 2,
reps = 3
),
tarchetypes::tar_rep(
data2,
list(value = rnorm(1)),
batches = 2, reps = 3,
iteration = "list" # List iteration is important for batched lists.
),
tarchetypes::tar_rep2_raw( # Use instead of tar_rep_map_raw().
"aggregate",
quote(data.frame(value = data1$value + data2$value)),
targets = c("data1", "data2")
)
)
})
targets::tar_make()
targets::tar_read(aggregate)
})
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.