Description Usage Arguments Details Value Author(s) References Examples
In the standard stochastic frontier model, the two-sided error term V and the one-sided technical inefficiency error term W are assumed to be independent. In this paper, we relax this assumption by modeling the dependence between V and W using copulas. Nine copula families are considered and their parameters are estimated using maximum simulated likelihood.
1 | copSQM(Y,X,family=1,RHO=0.5,LB=-0.99,UB=0.99)
|
Y |
vector of dependent variable |
X |
matrix of independent variable |
family |
Copula function eg. Gaussain=1, Student-t=2 (see, Vinecopula package) |
RHO |
The initail value of the copula parameter |
LB |
The lower bound of the copula parameter |
UB |
The upper bound of the copula parameter |
herefore, the above copula families and relevant rotated copula can potentially capture the appropriate dependence between two random variables. Other popular copula families, such as Gaussain, Student,t Clayton, Gumbel etc.
result |
The result contain the estimated parameters, standard errors, t-stat, and p-value |
AIC |
Akaiki Information Criteria |
BIC |
Bayesian Information Criteria |
Loglikelihood |
Maximum Log-likelihood function |
Woraphon Yamaka
Wiboonpongse, A., Liu, J., Sriboonchitta, S., & Denoeux, T. (2015). Modeling dependence between error components of the stochastic frontier model using copula: application to intercrop coffee production in Northern Thailand. International Journal of Approximate Reasoning, 65, 34-44.
Maneejuk, P., Yamaka, W., & Sriboonchitta, S. (2017). Analysis of global competitiveness using copula-based stochastic frontier kink model. In Robustness in Econometrics (pp. 543-559). Springer, Cham.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 | ## Required packages
library(truncnorm)
library(mvtnorm)
library("VineCopula")
library("frontier")
#example simulation data
data=sfa.simu(nob=200, alpha=c(1,2,0.5),sigV=1,sigU=0.5,family=1,rho=0.5)
# Select familty copula upper and lower bouubd ( look at CDVine package)
# family=1 # 1 is Gaussian, 2 is Student-t, 3 is Clayton and so on....
#Gaussian (-.99, .99)
#Student t (-.99, .99)
#Clayton (0.1, Inf)
model=copSFM(Y=data$Y,X=data$X,family=1,RHO=0.5,LB=-0.99,UB=0.99)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.