MEregress: Generalized Maximum Entropy for estimating linear regression.

Usage Arguments Details Value Author(s) References Examples

View source: R/MEregress.R

Usage

1
MEregress(y,x,number,Z,V)

Arguments

y

dependent variable

x

One dimension of dependent variable

number

number of supports i.e. "3", "5" and "7

Z

bound of coefficient

V

bound of error

Details

This funciton is used to estimated the linear regression

Value

beta

intercept,beta

Maxent

Maximum entropy

Author(s)

Dr.Woraphon Yamaka

References

Golan, A., Judge, G. G., & Miller, D. (1996). Maximum entropy econometrics. Iowa State University, Department of Economics. Jaynes, E. T. (1957). Information theory and statistical mechanics. Physical review, 106(4), 620.

Maneejuk, P. and Yamaka, W. (2020). Entropy Inference in Smooth Transition Kink Regression

Examples

1
2
3
4
5
6
7
8
9
library("Rsolnp")
set.seed(1)
n=100
e=rnorm(n)
x0=rnorm(n)
x1=rnorm(n)
y=1+2*x0+3*x1+e
x=cbind(x0,x1)
MEregress(y,x,number="3",Z=10,V=5)

woraphonyamaka/GMEreg documentation built on July 28, 2020, 9:59 a.m.