esti: ARIMA Model Estimation

estiR Documentation

ARIMA Model Estimation

Description

Performas estimation, diagnostic checking, and forecasting for a specified ARIMA model and time series data object.

Usage

esti(
  data.tsd,
  gamma = 1,
  m = 0,
  model,
  gof.lag = 10,
  lag.max = 38,
  number.forecasts = 24,
  pred.level = 0.95,
  xreg.in,
  y.range,
  x.range,
  d.trend = FALSE,
  print.table = FALSE,
  ps1 = NULL,
  ps2 = NULL,
  ...
)

Arguments

data.tsd

Input time series data object (output from the tsd function).

gamma

Optional; the Box-Cox transformation power parameter. The default value is gamma=1 (no transformation). If a log transformation is needed, use gamma=0.

m

Optional constant to added to the response variable before the data are transformed. The default value is m=0.

model

A list specifying an ARIMA model. See functions model.pdq for a simple method for specifying the model input.

gof.lag

Number of lags to be use to compute the Ljung-Box statistic (default=10).

lag.max

The number of lags at which to estimate residual autocorrelations (default is lag.max=38).

number.forecasts

How far into the future to forecast (default is number.forecast=24).

pred.level

Prediction confidence level (default is pred.level =0 .95).

xreg.in

An x matrix for dynamic regression (see lead.matrix).

y.range

Range of the y axis for the predictions

x.range

Range of the x axis for the predictions

d.trend

Indicates whether a model should have a deterministic trend term or not (default is d.trend = FALSE).

print.table

If print.table = TRUE, a table of the forecasts and prediction intervals will be provided (default is print.table = FALSE).

ps1

if provided, the postscript file name for the first page of graphical output

ps2

if provided, the postscript file name for the second page of graphical output

...

allows sending down extra arguments to the arima function (such as optimization options or fixed values of parameters).

Value

Invisibly returns the output from the R arima command used to do the estimation.

Examples

# AR(1) model for the sunspot data
esti(spot.tsd, model=model.pdq(p=3))

# Airline model for the international airline passengers data
Passengers.ts <- ts(Passengers, freq=12, start=1949)
Passengers.tsd <- tsd(Passengers.ts, data.title='International Airline Passengers',
                      time.units='Year', response.units='Thousands of Passengers')
airline.model <- model.pdq(period=12, d=1, D=1, q=1, Q=1)
esti(Passengers.tsd, gamma = 0, model=airline.model)
esti(Passengers.tsd, gamma = 0, m = 2, model=airline.model)


wqmeeker/RTseries documentation built on Dec. 31, 2022, 10 a.m.