conv.2x2 | R Documentation |
Function to reconstruct the cell frequencies of \mjeqn2 \times 22x2 tables based on other summary statistics. \loadmathjax
conv.2x2(ori, ri, x2i, ni, n1i, n2i, correct=TRUE, data, include,
var.names=c("ai","bi","ci","di"), append=TRUE, replace="ifna")
ori |
optional vector with the odds ratios corresponding to the tables. |
ri |
optional vector with the phi coefficients corresponding to the tables. |
x2i |
optional vector with the (signed) chi-square statistics corresponding to the tables. |
ni |
vector with the total sample sizes. |
n1i |
vector with the marginal counts for the outcome of interest on the first variable. |
n2i |
vector with the marginal counts for the outcome of interest on the second variable. |
correct |
optional logical (or vector thereof) to specify whether chi-square statistics were computed using Yates's correction for continuity (the default is |
data |
optional data frame containing the variables given to the arguments above. |
include |
optional (logical or numeric) vector to specify the subset of studies for which the cell frequencies should be reconstructed. |
var.names |
character vector with four elements to specify the names of the variables for the reconstructed cell frequencies (the default is |
append |
logical to specify whether the data frame provided via the |
replace |
character string or logical to specify how values in |
For meta-analyses based on \mjeqn2 \times 22x2 table data, the problem often arises that some studies do not directly report the cell frequencies. The present function allows the reconstruction of such tables based on other summary statistics.
In particular, assume that the data of interest for a particular study are of the form:
\ics | variable 2, outcome + | \ics | variable 2, outcome - | \ics | total | |
variable 1, outcome + | \ics | ai | \ics | bi | \ics | n1i |
variable 1, outcome - | \ics | ci | \ics | di | \ics | |
total | \ics | n2i | \ics | \ics | ni |
where ai
, bi
, ci
, and di
denote the cell frequencies (i.e., the number of individuals falling into a particular category), n1i
(i.e., ai+bi
) and n2i
(i.e., ai+ci
) are the marginal totals for the outcome of interest on the first and second variable, respectively, and ni
is the total sample size (i.e., ai+bi+ci+di
) of the study.
For example, if variable 1 denotes two different groups (e.g., treated versus control) and variable 2 indicates whether a particular outcome of interest has occurred or not (e.g., death, complications, failure to improve under the treatment), then n1i
denotes the number of individuals in the treatment group, but n2i
is not the number of individuals in the control group, but the total number of individuals who experienced the outcome of interest on variable 2. Note that the meaning of n2i
is therefore different here compared to the escalc
function (where n2i
denotes ci+di
).
If a study does not report the cell frequencies, but it reports the total sample size (which can be specified via the ni
argument), the two marginal counts (which can be specified via the n1i
and n2i
arguments), and some other statistic corresponding to the table, then it may be possible to reconstruct the cell frequencies. The present function currently allows this for three different cases:
If the odds ratio \mjdeqnOR = \fraca_i d_ib_i c_iai*di/(bi*ci) is known, then the cell frequencies can be reconstructed (Bonett, 2007). Odds ratios can be specified via the ori
argument.
If the phi coefficient \mjdeqn\phi = \fraca_i d_i - b_i c_i\sqrtn_1i(n_i-n_1i)n_2i(n_i-n_2i)\phi = (ai*di-bi*ci) / \sqrtn1i*(ni-n1i)*n2i*(ni-n2i) is known, then the cell frequencies can again be reconstructed (own derivation). Phi coefficients can be specified via the ri
argument.
If the chi-square statistic from Pearson's chi-square test of independence is known (which can be specified via the x2i
argument), then it can be used to recalculate the phi coefficient and hence again the cell frequencies can be reconstructed. However, the chi-square statistic does not carry information about the sign of the phi coefficient. Therefore, values specified via the x2i
argument can be positive or negative, which allows the specification of the correct sign. Also, when using a chi-square statistic as input, it is assumed that it was computed using Yates's correction for continuity (unless correct=FALSE
). If the chi-square statistic is not known, but its p-value, one can first back-calculate the chi-square statistic using qchisq(<p-value>, df=1, lower.tail=FALSE)
.
Typically, the odds ratio, phi coefficient, or chi-square statistic (or its p-value) that can be extracted from a study will be rounded to a certain degree. The calculations underlying the function are exact only for unrounded values. Rounding can therefore introduce some discrepancies.
If a marginal total is unknown, then external information needs to be used to ‘guestimate’ the number of individuals that experienced the outcome of interest on this variable. Depending on the accuracy of such an estimate, the reconstructed cell frequencies will be more or less accurate and need to be treated with due caution.
The true marginal counts also put constraints on the possible values for the odds ratio, phi coefficient, and chi-square statistic. If a marginal count is replaced by a guestimate which is not compatible with the given statistic, one or more reconstructed cell frequencies may be negative. The function issues a warning if this happens and sets the cell frequencies to NA
for such a study.
If only one of the two marginal counts is unknown but a 95% CI for the odds ratio is also available, then the estimraw package can also be used to reconstruct the corresponding cell frequencies (Di Pietrantonj, 2006; but see Veroniki et al., 2013, for some cautions).
If the data
argument was not specified or append=FALSE
, a data frame with four variables called var.names
with the reconstructed cell frequencies.
If data
was specified and append=TRUE
, then the original data frame is returned. If var.names[j]
(for \mjeqn\textj \in \\1, ..., 4\\for j in {1, ..., 4}) is a variable in data
and replace="ifna"
(or replace=FALSE
), then only missing values in this variable are replaced with the estimated frequencies (where possible) and otherwise a new variable called var.names[j]
is added to the data frame.
If replace="all"
(or replace=TRUE
), then all values in var.names[j]
where a reconstructed cell frequency can be computed are replaced, even for cases where the value in var.names[j]
is not missing.
Wolfgang Viechtbauer (wvb@metafor-project.org, https://www.metafor-project.org).
Bonett, D. G. (2007). Transforming odds ratios into correlations for meta-analytic research. American Psychologist, 62(3), 254–255. https://doi.org/10.1037/0003-066x.62.3.254
Di Pietrantonj, C. (2006). Four-fold table cell frequencies imputation in meta analysis. Statistics in Medicine, 25(13), 2299–2322. https://doi.org/10.1002/sim.2287
Veroniki, A. A., Pavlides, M., Patsopoulos, N. A., & Salanti, G. (2013). Reconstructing 2 x 2 contingency tables from odds ratios using the Di Pietrantonj method: Difficulties, constraints and impact in meta-analysis results. Research Synthesis Methods, 4(1), 78–94. https://doi.org/10.1002/jrsm.1061
Viechtbauer, W. (2010). Conducting meta-analyses in R with the metafor package. Journal of Statistical Software, 36(3), 1–48. https://doi.org/10.18637/jss.v036.i03
escalc
for a function to compute various effect size measures based on \mjeqn2 \times 22x2 table data.
### demonstration that the reconstruction of the 2x2 table works
### (note: the values in rows 2, 3, and 4 correspond to those in row 1)
dat <- data.frame(ai=c(36,NA,NA,NA), bi=c(86,NA,NA,NA), ci=c(20,NA,NA,NA), di=c(98,NA,NA,NA),
oddsratio=NA, phi=NA, chisq=NA, ni=NA, n1i=NA, n2i=NA)
dat$oddsratio[2] <- round(exp(escalc(measure="OR", ai=ai, bi=bi, ci=ci, di=di, data=dat)$yi[1]), 2)
dat$phi[3] <- round(escalc(measure="PHI", ai=ai, bi=bi, ci=ci, di=di, data=dat)$yi[1], 2)
dat$chisq[4] <- round(chisq.test(matrix(c(t(dat[1,1:4])), nrow=2, byrow=TRUE))$statistic, 2)
dat$ni[2:4] <- with(dat, ai[1] + bi[1] + ci[1] + di[1])
dat$n1i[2:4] <- with(dat, ai[1] + bi[1])
dat$n2i[2:4] <- with(dat, ai[1] + ci[1])
dat
### reconstruct cell frequencies for rows 2, 3, and 4
dat <- conv.2x2(ri=phi, ori=oddsratio, x2i=chisq, ni=ni, n1i=n1i, n2i=n2i, data=dat)
dat
### same example but with cell frequencies that are 10 times as large
dat <- data.frame(ai=c(360,NA,NA,NA), bi=c(860,NA,NA,NA), ci=c(200,NA,NA,NA), di=c(980,NA,NA,NA),
oddsratio=NA, phi=NA, chisq=NA, ni=NA, n1i=NA, n2i=NA)
dat$oddsratio[2] <- round(exp(escalc(measure="OR", ai=ai, bi=bi, ci=ci, di=di, data=dat)$yi[1]), 2)
dat$phi[3] <- round(escalc(measure="PHI", ai=ai, bi=bi, ci=ci, di=di, data=dat)$yi[1], 2)
dat$chisq[4] <- round(chisq.test(matrix(c(t(dat[1,1:4])), nrow=2, byrow=TRUE))$statistic, 2)
dat$ni[2:4] <- with(dat, ai[1] + bi[1] + ci[1] + di[1])
dat$n1i[2:4] <- with(dat, ai[1] + bi[1])
dat$n2i[2:4] <- with(dat, ai[1] + ci[1])
dat <- conv.2x2(ri=phi, ori=oddsratio, x2i=chisq, ni=ni, n1i=n1i, n2i=n2i, data=dat)
dat # slight inaccuracy in row 3 due to rounding
### demonstrate what happens when a true marginal count is guestimated
escalc(measure="PHI", ai=176, bi=24, ci=72, di=128)
conv.2x2(ri=0.54, ni=400, n1i=200, n2i=248) # using the true marginal counts
conv.2x2(ri=0.54, ni=400, n1i=200, n2i=200) # marginal count for variable 2 is guestimated
conv.2x2(ri=0.54, ni=400, n1i=200, n2i=50) # marginal count for variable 2 is incompatible
### demonstrate that using the correct sign for the chi-square statistic is important
chisq <- round(chisq.test(matrix(c(40,60,60,40), nrow=2, byrow=TRUE))$statistic, 2)
conv.2x2(x2i=-chisq, ni=200, n1i=100, n2i=100) # correct reconstruction
conv.2x2(x2i=chisq, ni=200, n1i=100, n2i=100) # incorrect reconstruction
### demonstrate use of the 'correct' argument
tab <- matrix(c(28,14,12,18), nrow=2, byrow=TRUE)
chisq <- round(chisq.test(tab)$statistic, 2) # chi-square test with Yates' continuity correction
conv.2x2(x2i=chisq, ni=72, n1i=42, n2i=40) # correct reconstruction
chisq <- round(chisq.test(tab, correct=FALSE)$statistic, 2) # without Yates' continuity correction
conv.2x2(x2i=chisq, ni=72, n1i=42, n2i=40) # incorrect reconstruction
conv.2x2(x2i=chisq, ni=72, n1i=42, n2i=40, correct=FALSE) # correct reconstruction
### recalculate chi-square statistic based on p-value
pval <- round(chisq.test(tab)$p.value, 2)
chisq <- qchisq(pval, df=1, lower.tail=FALSE)
conv.2x2(x2i=chisq, ni=72, n1i=42, n2i=40)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.