View source: R/compile_pseudo_pop.R
compile_pseudo_pop | R Documentation |
Compiles pseudo population based on the original population and estimated GPS value.
compile_pseudo_pop( data_obj, ci_appr, gps_model, bin_seq, nthread, optimized_compile, ... )
data_obj |
A S3 object including the following:
|
ci_appr |
Causal inference approach. |
gps_model |
Model type which is used for estimating GPS value, including parametric and non-parametric. |
bin_seq |
Sequence of w (treatment) to generate pseudo population. If
NULL is passed the default value will be used, which is
|
nthread |
An integer value that represents the number of threads to be used by internal packages. |
optimized_compile |
If TRUE, uses counts to keep track of number of replicated pseudo population. |
... |
Additional parameters. |
compile_pseudo_pop
returns the pseudo population data that is compiled based
on the selected causal inference approach.
The input data set should be output of estimate_gps function with internal_use flag activated.
set.seed(112) m_d <- generate_syn_data(sample_size = 100) data_with_gps <- estimate_gps(m_d$Y, m_d$treat, m_d[c("cf1","cf2","cf3","cf4","cf5","cf6")], pred_model = "sl", gps_model = "parametric", internal_use = TRUE, params = list(xgb_max_depth = c(3,4,5), xgb_nrounds=c(10,20,30,40,50,60)), nthread = 1, sl_lib = c("m_xgboost") ) pd <- compile_pseudo_pop(data_obj = data_with_gps, ci_appr = "matching", gps_model = "parametric", bin_seq = NULL, nthread = 1, optimized_compile=TRUE, matching_fun = "matching_l1", covar_bl_method = 'absolute', covar_bl_trs = 0.1, covar_bl_trs_type= "mean", delta_n = 0.5, scale = 1)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.