View source: R/estimate_npmetric_erf.R
estimate_npmetric_erf | R Documentation |
Estimate smoothed exposure-response function (ERF) for matched and weighted data set using non-parametric models.
estimate_npmetric_erf( m_Y, m_w, counter_weight, bw_seq = seq(0.2, 2, 0.2), w_vals, nthread )
m_Y |
A vector of outcome variable in the matched set. |
m_w |
A vector of continuous exposure variable in the matched set. |
counter_weight |
A vector of counter or weight variable in the matched set. |
bw_seq |
A vector of bandwidth values (Default is seq(0.2,2,0.2)). |
w_vals |
A vector of values that you want to calculate the values of the ERF at. |
nthread |
The number of available cores. |
Estimate Functions Using Local Polynomial kernel regression.
The function returns a gpsm_erf object. The object includes the following attributes:
params
m_Y
m_w
bw_seq
w_vals
erf
fcall
set.seed(697) m_d <- generate_syn_data(sample_size = 200) pseudo_pop <- generate_pseudo_pop(m_d$Y, m_d$treat, m_d[c("cf1","cf2","cf3","cf4","cf5","cf6")], ci_appr = "matching", pred_model = "sl", sl_lib = c("m_xgboost"), params = list(xgb_nrounds=c(10,20,30), xgb_eta=c(0.1,0.2,0.3)), nthread = 1, optimized_compile = TRUE, covar_bl_method = "absolute", covar_bl_trs = 0.1, covar_bl_trs_type="mean", max_attempt = 1, matching_fun = "matching_l1", delta_n = 1, scale = 0.5) erf_obj <- estimate_npmetric_erf(pseudo_pop$pseudo_pop$Y, pseudo_pop$pseudo_pop$w, pseudo_pop$pseudo_pop$counter_weight, bw_seq=seq(0.2,2,0.2), w_vals = seq(2,20,0.5), nthread = 1)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.