library(ggplot2)
# heat rates --------------------------------------------------------------
# generators grouped by category and fuel
hr.model %>%
filter( ! overnight_category %in% c('fuel cell', 'photovoltaic' ) )%>%
filter(ifelse(fuel_general=='oil', ! overnight_category %in% c('steam turbine', 'conventional combined cycle'), overnight_category!='')) %>%
#group_by(year, overnight_category) %>%
#summarise(heatrate=mean(heatrate, na.rm=TRUE),
# heatrate.pred=mean(heatrate.pred, na.rm=TRUE)) %>%
#ungroup() %>%
ggplot(aes(x=year)) +
geom_point(aes(y = heatrate)) +
geom_line(aes(y = heatrate.pred)) +
facet_wrap(~overnight_category+fuel_general, scales='free_y') +
labs(x='year', y='Btu/MWh', title='Heat Rate ~ Category & Fuel')
hr.model %>%
filter(overnight_category=='conventional combined cycle', fuel_general=='oil') %>%
ggplot(aes(x=year)) +
geom_point(aes(y = heatrate)) +
geom_line(aes(y = heatrate.pred)) +
#facet_wrap(~overnight_category+fuel_general) +
labs(x='year', y='Btu/MWh', title='Heat Rate ~ Category & Fuel')
hr.model %>%
ggplot(aes(x=year)) +
geom_point(aes(y = heatrate)) +
geom_line(aes(y = heatrate.pred)) +
facet_wrap(~overnight_category+fuel_general, scales='free_y') +
labs(x='year', y='Btu/MWh', title='Heat Rate ~ Category & Fuel')
# generators grouped by fuel
ggplot(hr.model, aes(x=year)) +
geom_point(aes(y = heatrate)) +
geom_line(aes(y = heatrate.pred)) +
facet_wrap(~fuel_general) +
labs(x='year', y='Btu/MWh', title='Heat Rate ~ Fuel')
# marginal costs ----------------------------------------------------------
ggplot(marginalcosts, aes(x=year)) +
geom_line(aes(y=marginal.cost, color=fuel_general)) +
labs(x='year', y='$/MWh', title='Marginal Cost by Fuel')
# capital costs -----------------------------------------------------------
o.m <- capitalcosts %>%
select(-base.overnight) %>%
melt( id.vars=c('year', 'overnight_category'),
measure.vars=c('variable.o.m', 'fixed.o.m'),
variable.name='cost')
ggplot(o.m) +
geom_point(aes(x=year, y=value, colour=cost)) +
facet_wrap(~overnight_category) +
labs(x='year', y='1975$/MWh', title='O&M Costs (1997-2015)')
select(capitalcosts, year, overnight_category,base.overnight) %>%
ggplot() +
geom_point(aes(x=year,y=base.overnight)) +
facet_wrap(~overnight_category) +
labs(x='year', y='1975$/MW', title='Overnight Costs (1997-2015)')
# capacity factors --------------------------------------------------------
ggplot(unreasonable, aes(capacityfactor)) +
geom_histogram()
# full costs --------------------------------------------------------------
test <- fullcosts %>%
group_by(year, overnight_category, fuel_general) %>%
summarise(fullcost.avg = mean(fullcost),
plts=n())
ggplot(test) +
geom_line(aes(x=year, y=fullcost.avg, color=overnight_category)) +
facet_wrap(~fuel_general)
ggplot(test) +
geom_point(aes(x=plts, y=fullcost.avg))
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.