cluster_mod: Estimate the optimal posterior distribution of the data...

heterogbcmR Documentation

Estimate the optimal posterior distribution of the data column labels.

Description

'heterogbcm( )' gives the optimal posterior distribution of the labels, which can be used to derive the optimal label assignment of the data columns.

'get_random_qc( )' assign initial prob between 0 and 1 to cluster matrix

'get_prob( )' get num_prob with sum equal to total_prob

'heterogbcm_prob_qc( )' set initial distribution of label to be probability rather than discrete value.

'heterogbcm_converge_qc( )' set initial distribution of label to be probability rather than discrete value.

'obj_logL' calculates the negative log-likelihood function of data fitted into the HBCM model

Usage

heterogbcm(x, centers, tol, iter, iter_init = 3, labels, verbose = FALSE)

get_random_qc(grp, centers)

get_prob(num_prob, total_prob)

heterogbcm_prob_qc(
  x,
  centers,
  tol,
  iter,
  iter_init = 3,
  labels,
  verbose = FALSE
)

heterogbcm_converge_qc(
  x,
  centers,
  tol,
  iter,
  iter_init = 3,
  labels,
  verbose = FALSE
)

obj_qc(x, centers, ppi, omega, qalpha, hlambda, hsigma)

obj_qalpha(x, centers, omega, qc, hlambda, hsigma)

obj_ppi(centers, qc)

obj_omega(centers, qalpha)

obj_hlambda(x, centers, qc, qalpha)

obj_hsigma(x, centers, qc, qalpha, hlambda)

obj_logL(x, centers, ppi, omega, qc, qalpha, hlambda, hsigma)

Arguments

x

a numeric matrix data.

centers

an integer specifying the number of clusters.

tol

numerical tolerance of the iteration updates.

iter

number of iterations.

iter_init

number of iterations of parameters initial estimation, default is 3.

labels

a vector specifying the cluster labels of the columns of x.

verbose

if TRUE, print iteration information.

ppi

probability of multi-nulli distribution.

omega

group-correlation matrix.

qalpha

posterior distribution of parameter vector alpha.

hlambda

heterogeneous parameter vector Lambda.

hsigma

heterogeneous parameter vector Sigma.

qc

posterior distribution of labels.

Value

A list of values.

omega

estimated optimal group-correlation matrix.

hlambda

estimated optimal heterogeneous parameter Lambda.

hsigma

estimated optimal heterogeneous parameter Sigma.

obj_logL_val

vector of -logL from each iteration.

qalpha

estimated optimal posterior distribution of the alpha.

qc

estimated optimal posterior distribution of the column labels.

cluster

a vector of integers (from 1:k) indicating the cluster to which each column is allocated.


xiangli2pro/hbcm documentation built on Nov. 15, 2024, 9:15 a.m.