heterogbcm | R Documentation |
'heterogbcm( )' gives the optimal posterior distribution of the labels, which can be used to derive the optimal label assignment of the data columns.
'get_random_qc( )' assign initial prob between 0 and 1 to cluster matrix
'get_prob( )' get num_prob with sum equal to total_prob
'heterogbcm_prob_qc( )' set initial distribution of label to be probability rather than discrete value.
'heterogbcm_converge_qc( )' set initial distribution of label to be probability rather than discrete value.
'obj_logL' calculates the negative log-likelihood function of data fitted into the HBCM model
heterogbcm(x, centers, tol, iter, iter_init = 3, labels, verbose = FALSE)
get_random_qc(grp, centers)
get_prob(num_prob, total_prob)
heterogbcm_prob_qc(
x,
centers,
tol,
iter,
iter_init = 3,
labels,
verbose = FALSE
)
heterogbcm_converge_qc(
x,
centers,
tol,
iter,
iter_init = 3,
labels,
verbose = FALSE
)
obj_qc(x, centers, ppi, omega, qalpha, hlambda, hsigma)
obj_qalpha(x, centers, omega, qc, hlambda, hsigma)
obj_ppi(centers, qc)
obj_omega(centers, qalpha)
obj_hlambda(x, centers, qc, qalpha)
obj_hsigma(x, centers, qc, qalpha, hlambda)
obj_logL(x, centers, ppi, omega, qc, qalpha, hlambda, hsigma)
x |
a numeric matrix data. |
centers |
an integer specifying the number of clusters. |
tol |
numerical tolerance of the iteration updates. |
iter |
number of iterations. |
iter_init |
number of iterations of parameters initial estimation, default is 3. |
labels |
a vector specifying the cluster labels of the columns of x. |
verbose |
if TRUE, print iteration information. |
ppi |
probability of multi-nulli distribution. |
omega |
group-correlation matrix. |
qalpha |
posterior distribution of parameter vector alpha. |
hlambda |
heterogeneous parameter vector Lambda. |
hsigma |
heterogeneous parameter vector Sigma. |
qc |
posterior distribution of labels. |
A list of values.
omega |
estimated optimal group-correlation matrix. |
hlambda |
estimated optimal heterogeneous parameter Lambda. |
hsigma |
estimated optimal heterogeneous parameter Sigma. |
obj_logL_val |
vector of -logL from each iteration. |
qalpha |
estimated optimal posterior distribution of the alpha. |
qc |
estimated optimal posterior distribution of the column labels. |
cluster |
a vector of integers (from 1:k) indicating the cluster to which each column is allocated. |
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.