experiment_functions: Estimate the optimal posterior distribution of the data...

heterogbcm_converge_qc_fix_hlambdaR Documentation

Estimate the optimal posterior distribution of the data column labels.

Description

'heterogbcm_converge_qc_fix_hlambda( )' uses given initial value of hlambda and hsigma, and keep the hlambda constant over iterations

'heterogbcm_logL( )' experiment function to compare the initial logL and last logL.

'heterogbcm_iterStep( )' experiment function with different update algorithm first update q2 and parameters Theta, then update q1 and parameters Theta.

'heterogbcm_noInitLabel( )' experiment function with no initial guess of the labels.

'heterogbcm_qcDiscrete( )' experiment function to update qc with discrete values.

Usage

heterogbcm_converge_qc_fix_hlambda(
  x,
  centers,
  tol,
  iter,
  iter_init = 3,
  labels,
  verbose = FALSE,
  hlambda
)

heterogbcm_logL(x, centers, tol, iter, iter_init = 3, labels, verbose = FALSE)

heterogbcm_iterStep(
  x,
  centers,
  tol,
  iter,
  iter_init = 3,
  labels,
  verbose = FALSE
)

heterogbcm_noInitLabel(
  x,
  centers,
  tol,
  iter,
  iter_init = 3,
  labels = NA,
  verbose = FALSE
)

heterogbcm_qcDiscrete(
  x,
  centers,
  tol,
  iter,
  iter_init = 3,
  labels,
  verbose = FALSE
)

Arguments

x

a numeric matrix data.

centers

an integer specifying the number of clusters.

tol

numerical tolerance of the iteration updates.

iter

number of iterations.

iter_init

iteration times of initial parameter estimation

labels

a vector specifying the cluster labels of the columns of x.

verbose

if TRUE, print iteration information.

init_hlambda

initial values for parameter vector Lambda.

init_hsigma

initial values for parameter vector Sigma.

Value

A list of values.

omega

estimated optimal group-correlation matrix.

hlambda

estimated optimal heterogeneous parameter Lambda.

hsigma

estimated optimal heterogeneous parameter Sigma.

obj_logL_val

vector of -logL from each iteration.

qc

estimated optimal posterior distribution of the column labels.

cluster

a vector of integers (from 1:k) indicating the cluster to which each column is allocated.


xiangli2pro/hbcm documentation built on Nov. 15, 2024, 9:15 a.m.