ipw.bootstrap.ph2: To generate the empirical distribution for estimated...

Description Usage Arguments Value Author(s) References

View source: R/ipw.bootstrap.ph2.R

Description

To generate the empirical distribution for estimated sub-distribution hazard functions and regression coefficients, we adopted the two-phase weighted bootstrap procedure (Hyun et al, reference). We fit ipw.pi.competing function from main.R to the bootstrap weighted data.The most arguments except for three arguments, n.boot, parallel, n.core are necessary for fitting "ipw.pi.competing" function.

Usage

1
2
3
4
5
ipw.bootstrap.ph2(n.boot, Data, p.model, i.model1, i.model2,
  trans.r1 = 0, trans.r2 = 0, n.beta = 1, n.gamma1 = 0,
  n.gamma2 = 0, reg.initials = NULL, convergence.criteria = 0.001,
  iteration.limit = 250, time.interval, time.list = NULL,
  parallel = FALSE, n.core = NULL, ...)

Arguments

n.boot

the number of replications for bootstrap resampling

parallel

if parallel=TRUE, n.core should be specified. Default to FALSE.

n.core

the nummber of cores for parallel computing

Value

The output is a list of class ipw.bootstrap.ph2, which contains the following elements.

Author(s)

Noorie Hyun, nhyun@mcw.edu, Xiao Li xiaoli@mcw.edu

References


xiaoli-mcw/PIcompete documentation built on May 20, 2020, 7:44 p.m.