context("boosting-based learners")
library(rlearner)
n = 100
max_tol = 1
min_tol = 1
test_that("boosting based learners return the correct output format and predict well when the problem is easy", {
set.seed(1)
easy_sim_data = easy_toy_data_simulation(10*n) # draw a sample
r.fit = rboost(easy_sim_data$x, easy_sim_data$w, easy_sim_data$y)
r.pred = predict(r.fit)
meta_learner_tests(r.pred, easy_sim_data, 0.1)
r1.fit = rboost(easy_sim_data$x, easy_sim_data$w, easy_sim_data$y+1)
r1.pred = predict(r1.fit)
invariate_add_tests(r.pred, r1.pred)
r2.fit = rboost(easy_sim_data$x, easy_sim_data$w, easy_sim_data$y*2)
r2.pred = predict(r2.fit)
invariate_mult_tests(r.pred, r2.pred)
s.fit = sboost(easy_sim_data$x, easy_sim_data$w, easy_sim_data$y)
s.pred = predict(s.fit)
meta_learner_tests(s.pred, easy_sim_data, 0.1)
s1.fit = sboost(easy_sim_data$x, easy_sim_data$w, easy_sim_data$y+1)
s1.pred = predict(s1.fit)
invariate_add_tests(s.pred, s1.pred)
s2.fit = sboost(easy_sim_data$x, easy_sim_data$w, easy_sim_data$y*2)
s2.pred = predict(s2.fit)
invariate_mult_tests(s.pred, s2.pred)
t.fit = tboost(easy_sim_data$x, easy_sim_data$w, easy_sim_data$y)
t.pred = predict(t.fit)
meta_learner_tests(t.pred, easy_sim_data, 0.1)
t1.fit = tboost(easy_sim_data$x, easy_sim_data$w, easy_sim_data$y+1)
t1.pred = predict(t1.fit)
invariate_add_tests(t.pred, t1.pred)
t2.fit = tboost(easy_sim_data$x, easy_sim_data$w, easy_sim_data$y*2)
t2.pred = predict(t2.fit)
invariate_mult_tests(t.pred, t2.pred)
u.fit = uboost(easy_sim_data$x, easy_sim_data$w, easy_sim_data$y)
u.pred = predict(u.fit)
meta_learner_tests(u.pred, easy_sim_data, 0.1)
u1.fit = uboost(easy_sim_data$x, easy_sim_data$w, easy_sim_data$y+1)
u1.pred = predict(u1.fit)
invariate_add_tests(u.pred, u1.pred)
u2.fit = uboost(easy_sim_data$x, easy_sim_data$w, easy_sim_data$y*2)
u2.pred = predict(u2.fit)
invariate_mult_tests(u.pred, u2.pred)
x.fit = xboost(easy_sim_data$x, easy_sim_data$w, easy_sim_data$y)
x.pred = predict(x.fit)
meta_learner_tests(x.pred, easy_sim_data, 0.1)
x1.fit = xboost(easy_sim_data$x, easy_sim_data$w, easy_sim_data$y+1)
x1.pred = predict(x1.fit)
invariate_add_tests(x.pred, x1.pred)
x2.fit = xboost(easy_sim_data$x, easy_sim_data$w, easy_sim_data$y*2)
x2.pred = predict(x2.fit)
invariate_mult_tests(x.pred, x2.pred)
})
test_that("boosting based learners predict well in setup B in the paper", {
set.seed(1)
easy_sim_data = data_simulation(500) # draw a sample
r.fit = rboost(easy_sim_data$x, easy_sim_data$w, easy_sim_data$y)
r.pred = predict(r.fit)
meta_learner_tests(r.pred, easy_sim_data, 0.35)
s.fit = sboost(easy_sim_data$x, easy_sim_data$w, easy_sim_data$y)
s.pred = predict(s.fit)
meta_learner_tests(s.pred, easy_sim_data, 0.35)
t.fit = tboost(easy_sim_data$x, easy_sim_data$w, easy_sim_data$y)
t.pred = predict(t.fit)
meta_learner_tests(t.pred, easy_sim_data, 0.4)
u.fit = uboost(easy_sim_data$x, easy_sim_data$w, easy_sim_data$y)
u.pred = predict(u.fit)
meta_learner_tests(u.pred, easy_sim_data, 0.35)
x.fit = xboost(easy_sim_data$x, easy_sim_data$w, easy_sim_data$y)
x.pred = predict(x.fit)
meta_learner_tests(x.pred, easy_sim_data, 0.35)
})
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.