ulasso: U-learner implemented via glmnet (lasso)

Description Usage Arguments Examples

View source: R/ulasso.R

Description

U-learner as proposed by Kunzel, Sekhon, Bickel, and Yu (2017), implemented via glmnet (lasso)

Usage

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
ulasso(
  x,
  w,
  y,
  alpha = 1,
  k_folds = NULL,
  lambda_y = NULL,
  lambda_w = NULL,
  lambda_tau = NULL,
  lambda_choice = c("lambda.1se", "lambda.min"),
  p_hat = NULL,
  m_hat = NULL,
  cutoff = 0.05
)

Arguments

x

the input features

w

the treatment variable (0 or 1)

y

the observed response (real valued)

alpha

tuning parameter for the elastic net

k_folds

number of folds for cross-fitting

lambda_y

user-supplied lambda sequence for cross validation in learning E[y|x]

lambda_w

user-supplied lambda sequence for cross validation in learning E[w|x]

lambda_tau

user-supplied lambda sequence for cross validation in learning the treatment effect E[y(1) - y(0) | x]

lambda_choice

how to cross-validate for the treatment effect tau; choose from "lambda.1se" or "lambda.min"

p_hat

user-supplied estimate for E[W|X]

m_hat

user-supplied estimte for E[Y|X]

cutoff

the threshold to cutoff propensity estimate

Examples

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
## Not run: 
n = 100; p = 10

x = matrix(rnorm(n*p), n, p)
w = rbinom(n, 1, 0.5)
y = pmax(x[,1], 0) * w + x[,2] + pmin(x[,3], 0) + rnorm(n)

ulasso_fit = ulasso(x, w, y)
ulasso_est = predict(ulasso_fit, x)

## End(Not run)

xnie/rlearner documentation built on April 11, 2021, 12:49 a.m.