#' @include utils.R
#'
#' @title U-learner implemented via glmnet (lasso)
#'
#' @description U-learner as proposed by Kunzel, Sekhon, Bickel, and Yu (2017), implemented via glmnet (lasso)
#'
#' @param x the input features
#' @param w the treatment variable (0 or 1)
#' @param y the observed response (real valued)
#' @param alpha tuning parameter for the elastic net
#' @param k_folds number of folds for cross-fitting
#' @param lambda_y user-supplied lambda sequence for cross validation in learning E[y|x]
#' @param lambda_w user-supplied lambda sequence for cross validation in learning E[w|x]
#' @param lambda_tau user-supplied lambda sequence for cross validation in learning the treatment effect E[y(1) - y(0) | x]
#' @param lambda_choice how to cross-validate for the treatment effect tau; choose from "lambda.1se" or "lambda.min"
#' @param p_hat user-supplied estimate for E[W|X]
#' @param m_hat user-supplied estimte for E[Y|X]
#' @param cutoff the threshold to cutoff propensity estimate
#'
#' @examples
#' \dontrun{
#' n = 100; p = 10
#'
#' x = matrix(rnorm(n*p), n, p)
#' w = rbinom(n, 1, 0.5)
#' y = pmax(x[,1], 0) * w + x[,2] + pmin(x[,3], 0) + rnorm(n)
#'
#' ulasso_fit = ulasso(x, w, y)
#' ulasso_est = predict(ulasso_fit, x)
#' }
#' @export
ulasso = function(x, w, y,
alpha = 1,
k_folds = NULL,
lambda_y = NULL,
lambda_w = NULL,
lambda_tau = NULL,
lambda_choice=c("lambda.1se", "lambda.min"),
p_hat = NULL,
m_hat = NULL,
cutoff = 0.05){
input = sanitize_input(x,w,y)
x = input$x
w = input$w
y = input$y
if (!is.logical(w)) {
stop("w should be a logical vector")
}
lambda_choice = match.arg(lambda_choice)
nobs = nrow(x)
pobs = ncol(x)
if (is.null(k_folds)) {
k_folds = floor(max(3, min(10,length(w)/4)))
}
# fold ID for cross-validation; balance treatment assignments
foldid = sample(rep(seq(k_folds), length = length(w)))
if (is.null(m_hat)){
y_fit = glmnet::cv.glmnet(x, y, foldid = foldid, keep = TRUE, lambda = lambda_y, alpha = alpha)
m_hat = y_fit$fit.preval[,!is.na(colSums(y_fit$fit.preval))][, y_fit$lambda == y_fit$lambda.min]
}
else {
y_fit = NULL
}
if (is.null(p_hat)){
w_fit = glmnet::cv.glmnet(x, w,
foldid = foldid,
family="binomial",
type.measure="deviance",
keep = TRUE,
lambda = lambda_w,
alpha = alpha)
w_lambda_min = w_fit$lambda[which.min(w_fit$cvm[!is.na(colSums(w_fit$fit.preval))])]
theta_hat = w_fit$fit.preval[,!is.na(colSums(w_fit$fit.preval))][, w_fit$lambda[!is.na(colSums(w_fit$fit.preval))] == w_lambda_min]
p_hat = 1/(1 + exp(-theta_hat))
}
else{
w_fit = NULL
}
p_hat_thresh = pmax(cutoff, pmin(1 - cutoff, p_hat))
y_tilde = y - m_hat
w_tilde = w - p_hat_thresh
u = y_tilde / w_tilde
tau_fit = glmnet::cv.glmnet(x, u, nfolds = k_folds, alpha = alpha, lambda = lambda_tau)
tau_hat = predict(tau_fit, newx = x, s = lambda_choice)
ret = list(tau_fit = tau_fit,
w_fit = w_fit,
y_fit = y_fit,
p_hat = p_hat,
m_hat = m_hat,
tau_hat = tau_hat)
class(ret) <- "ulasso"
ret
}
#' predict for ulasso
#'
#' get estimated tau(x) using the trained ulasso model
#'
#' @param object a ulasso object
#' @param newx covariate matrix to make predictions on. If null, return the tau(x) predictions on the training data
#' @param ... additional arguments (currently not used)
#' @param s choose from "lambda.min" or "lambda.1se" for prediction
#'
#' @examples
#' \dontrun{
#' n = 100; p = 10
#'
#' x = matrix(rnorm(n*p), n, p)
#' w = rbinom(n, 1, 0.5)
#' y = pmax(x[,1], 0) * w + x[,2] + pmin(x[,3], 0) + rnorm(n)
#'
#' ulasso_fit = ulasso(x, w, y)
#' ulasso_est = predict(ulasso_fit, x)
#' }
#'
#'
#' @return vector of predictions
#' @export
predict.ulasso <- function(object,
newx = NULL,
s = c("lambda.1se", "lambda.min"),
...) {
s = match.arg(s)
if (!is.null(newx)) {
newx = sanitize_x(newx)
tau_hat = predict(object$tau_fit, newx = newx, s = s)
}
else {
tau_hat = object$tau_hat
}
return(tau_hat)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.