knitr::opts_chunk$set(
  collapse = TRUE,
  comment = "#>",
  fig.path = "man/figures/README-",
  out.width = "100%"
)

TScML

The goal of TScML is to perform the Two-stage Constrained Maximum Likelihood (2ScML) method. In the following example, we apply 2ScML in TWAS simulation to illustrate how to use our software.

Installation

You can install the development version of TScML from GitHub with:

# install.packages("devtools")
devtools::install_github("xue-hr/TScML")

Load Packages

We need three R packages:

if(!require("MASS"))
{
  install.packages("MASS")
  library(MASS)
}
if(!require("devtools"))
{
  install.packages("devtools")
  library(devtools)
}
if(!require("lasso2"))
{
  devtools::install_github("cran/lasso2")
  library(lasso2)
}
library(TScML)

Simulation Setup

Parameters in our simulation are set as below:

load("MAFB_SNP_May16.Rdata") # data used in simulation
p = 56 # number of SNPs
n1 = 500 # first sample size
n2 = 50000 # second sample size
n.ref = 10000 # reference panel size
random.error.size = 2 # random error size
beta.true = 0 # true causal effect
gamma.vec = c(0,rep(1,7),rep(0,p-8))*1 # effects from SNPs to exposure
alpha.vec = c(1,rep(0,5),rep(1,3),rep(0,p-9))*1 # direct effects from SNPs to outcome
sigma.12 = 0.5 # correlation between error terms
Sigma.Err = 
  matrix(c(1,sigma.12,sigma.12,1),
         nrow = 2)*random.error.size # covariance matrix of errors

Generate Simulated Data

We first generate individual level $Z$'s:

set.seed(123)
### generate all Z
Z.Stage1 = SNP_BED[sample(1:408339,n1,replace = T),]
Z.Stage2 = SNP_BED[sample(1:408339,n2,replace = T),]

Generate the first sample:

### generate stage 1 sample
Z = Z.Stage1
Random_Error = mvrnorm(n1, mu = c(0,0), Sigma = Sigma.Err)
D = Z%*%gamma.vec  + Random_Error[,1]
Y = beta.true*D + Z%*%alpha.vec + Random_Error[,2]
Z1 = scale(Z,scale = F)
D1 = scale(D,scale = F)
Y1 = scale(Y,scale = F)

Generate the second sample:

### generate stage 2 sample
Z = Z.Stage2
Random_Error = mvrnorm(n2, mu = c(0,0), Sigma = Sigma.Err)
D = Z%*%gamma.vec  + Random_Error[,1]
Y = beta.true*D + Z%*%alpha.vec + Random_Error[,2]
Z2 = scale(Z,scale = F)
D2 = scale(D,scale = F)
Y2 = scale(Y,scale = F)

Generate reference panel:

### generate reference panel
Z.ref = sample(1:408339,n.ref,replace = T)
Z.ref.original = SNP_BED[Z.ref,]
cor.Z.ref.original = cor(Z.ref.original) + diag(0.00001,p)

Calculate summary data:

### Input
cor.D1Z1.original = as.numeric(cor(D1,Z1))
cor.Y2Z2.original = as.numeric(cor(Y2,Z2))

Apply 2ScML and Oracle Methods

We apply 2ScML and Oracle methods to simulated data. We fit the model in first stage:

### Stage1 with individual-level data
Stage1FittedModel = 
  TScMLStage1(cor.D1Z1 = cor.D1Z1.original,
              Cap.Sigma.stage1 = cor(Z1),
              n1 = n1,
              p = p,
              ind.stage1 = 2:8)

Apply the Oracle model in second stage:

### Oracle Stage 2 with summary data and reference panel
Est.Sigma1Square = 
  as.numeric(1 - cor.D1Z1.original%*%solve(cor.Z.ref.original,tol=0)%*%cor.D1Z1.original)
Est.Sigma2Square = 
  as.numeric(1 - cor.Y2Z2.original%*%solve(cor.Z.ref.original,tol=0)%*%cor.Y2Z2.original)
if(Est.Sigma1Square<=0)
{
  Est.Sigma1Square = 1
}
if(Est.Sigma2Square<=0)
{
  Est.Sigma2Square = 1
}
OracleStage2.ref =
  OracleStage2(gamma.hat.stage1 = Stage1FittedModel,
               cor.Y2Z2 = cor.Y2Z2.original,
               Estimated.Sigma = cor.Z.ref.original,
               n1 = n1,
               n2 = n2,
               p = p,
               ind.stage2 = c(1,2,8,9,10),
               Est.Sigma1Square = Est.Sigma1Square,
               Est.Sigma2Square = Est.Sigma2Square)
Oracle.Summary.Var = 
  TScMLVar(Z.ref.original = Z.ref.original,
           Stage1FittedModel = Stage1FittedModel,
           betaalpha.hat.stage2 = OracleStage2.ref$betaalpha.hat.stage2,
           Est.Sigma1Square = Est.Sigma1Square,
           Est.Sigma2Square = Est.Sigma2Square,
           n1 = n1,n2 = n2,n.ref = n.ref)

Apply 2ScML in the second stage:

### TScML Stage2 with summary data and reference panel
Est.Sigma1Square = 
  as.numeric(1 - cor.D1Z1.original%*%solve(cor.Z.ref.original,tol=0)%*%cor.D1Z1.original)
Est.Sigma2Square = 
  as.numeric(1 - cor.Y2Z2.original%*%solve(cor.Z.ref.original,tol=0)%*%cor.Y2Z2.original)
if(Est.Sigma1Square<=0)
{
  Est.Sigma1Square = 1
}
if(Est.Sigma2Square<=0)
{
  Est.Sigma2Square = 1
}
start.time = Sys.time()
TScMLStage2.Ref =
  TScMLStage2(gamma.hat.stage1 = Stage1FittedModel,
              cor.Y2Z2 = cor.Y2Z2.original,
              Estimated.Sigma = cor.Z.ref.original,
              n1 = n1,
              n2 = n2,
              p = p,
              K.vec.stage2 = 0:10,
              Est.Sigma1Square = Est.Sigma1Square,
              Est.Sigma2Square = Est.Sigma2Square)
end.time = Sys.time()
TScML.Summary.Var = 
  TScMLVar(Z.ref.original = Z.ref.original,
           Stage1FittedModel = Stage1FittedModel,
           betaalpha.hat.stage2 = TScMLStage2.Ref$betaalpha.hat.stage2,
           Est.Sigma1Square = Est.Sigma1Square,
           Est.Sigma2Square = Est.Sigma2Square,
           n1 = n1,n2 = n2,n.ref = n.ref)

We record the run time of our main function TScMLStage2. Different from methods that use individual-level data, sample size does not influence run time of our main function TScMLStage2 as we only use summary data. The run time of TScMLStage2 mainly depends on two values, the first one is the number of instruments, i.e. $p$; the second one is the set of candidate $K$'s. Here we have $p = 56$ and $K = 0,\cdots,10$, and the run time is about 0.3 second, which should be adequately efficient:

run.time = end.time - start.time
run.time

Now we can show the results from Oracle and 2ScML.

# Oracle Estimate
OracleStage2.ref$betaalpha.hat.stage2[1] 
# Uncorrected Variance of Oracle Estimate
OracleStage2.ref$Asympt.Var.BetaHat 
# Corrected Variance of Oracle Estimate
Oracle.Summary.Var 
# 2ScML Estimate
TScMLStage2.Ref$betaalpha.hat.stage2[1] 
# Uncorrected Variance of 2ScML Estimate
TScMLStage2.Ref$Asympt.Var.BetaHat 
# Corrected Variance of 2ScML Estimate
TScML.Summary.Var 

We can see, in this simulation, the proposed 2ScML method gives same result as oracle method.

R Session Information

Here is the R session information. We performed the example in the latest R release 4.2.2.

sessionInfo()

Reference

Haoran Xue, Xiaotong Shen & Wei Pan (2023) Causal Inference in Transcriptome-Wide Association Studies with Invalid Instruments and GWAS Summary Data, Journal of the American Statistical Association, DOI: 10.1080/01621459.2023.2183127

Contact

Feel free to contact the author at xuexx268@umn.edu for any comments!



xue-hr/TScML documentation built on Feb. 4, 2025, 12:59 a.m.