Description Usage Arguments Value References Examples
This function returns the object function of Beyesion information criterion (BIC) under designated parameters.
1 |
Y |
Cluster-level data, a list of matrix, stand for gene expression data at different time points. |
A |
Dynamic gene regulatory network, a list of numerical matrix, obtained by scPADGRN. |
alpha |
Turing parameter in scPADGRN model, controls the weight of sparsity. |
beta |
Turing parameter in scPADGRN model, controls the weight of continuity. |
eps |
Threshold, controls "Dim" function in objective function of BIC optimization problem. |
Bi |
objective function of BIC optimization problem. |
Li Y, Jin S, Lei L, Pan Z, Zou X. Deciphering deterioration mechanisms of complex diseases based on the construction of dynamic networks and systems analysis. Scientific Reports. 2015;5:9283.
1 2 3 4 5 6 7 8 9 10 11 12 | ##---- Should be DIRECTLY executable !! ----
##-- ==> Define data, use random,
##-- or do help(data=index) for the standard data sets.
## The function is currently defined as
function (Y, A, alpha, beta, eps)
{
of <- objFunc(Y, A, alpha, beta)
dim <- dimList(A, eps)
Bi <- log(of) - log(dim)
return(Bi)
}
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.