BI: Objective function of Beyesion information criterion (BIC)

Description Usage Arguments Value References Examples

View source: R/BI.R

Description

This function returns the object function of Beyesion information criterion (BIC) under designated parameters.

Usage

1
BI(Y, A, alpha, beta, eps)

Arguments

Y

Cluster-level data, a list of matrix, stand for gene expression data at different time points.

A

Dynamic gene regulatory network, a list of numerical matrix, obtained by scPADGRN.

alpha

Turing parameter in scPADGRN model, controls the weight of sparsity.

beta

Turing parameter in scPADGRN model, controls the weight of continuity.

eps

Threshold, controls "Dim" function in objective function of BIC optimization problem.

Value

Bi

objective function of BIC optimization problem.

References

Li Y, Jin S, Lei L, Pan Z, Zou X. Deciphering deterioration mechanisms of complex diseases based on the construction of dynamic networks and systems analysis. Scientific Reports. 2015;5:9283.

Examples

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
##---- Should be DIRECTLY executable !! ----
##-- ==>  Define data, use random,
##--	or do  help(data=index)  for the standard data sets.

## The function is currently defined as
function (Y, A, alpha, beta, eps)
{
    of <- objFunc(Y, A, alpha, beta)
    dim <- dimList(A, eps)
    Bi <- log(of) - log(dim)
    return(Bi)
  }

xzheng-ac/scPADGRN documentation built on July 26, 2020, 12:41 a.m.