NUTS: The function to implement The No-U-Turn Sampler (NUTS)

View source: R/NUTS.R

NUTSR Documentation

The function to implement The No-U-Turn Sampler (NUTS)

Description

The function to implement The No-U-Turn Sampler (NUTS)

Usage

NUTS(
  A,
  j,
  iter,
  lpd_func,
  grad_lpd_func,
  M_adapt,
  M_diag,
  delta = 0.6,
  max_treedepth = 10,
  eps = 1,
  eps_bar,
  H,
  mu,
  verbose = TRUE,
  Delta_max,
  ...
)

Arguments

A

Parameter A or B.

j

The index for which column of A or B to be updated.

iter

The iteration index.

lpd_func

The log full conditional posterior density of A or B.

grad_lpd_func

The function to calculate the gradients of the log full conditional posterior density of A or B.

M_adapt

The M_adapt parameter used in the Algorithm 6 of NUTS.

M_diag

Covariance matrix for our matrix parameter A or B.

delta

The delta parameter used in the Algorithm 6 of NUTS.

max_treedepth

The maximal tree depth.

eps

The initial value for the stepsize tuning for find_reasonable_epsilon().

eps_bar

The eps_bar parameter used in the Algorithm 6 of NUTS.

H

The H_m in the Algorithm 6 of NUTS.

mu

The mu in the Algorithm 6 of NUTS.

verbose

Whether to show the progress messages for find_reasonable_epsilon().

Delta_max

The Delta_max parameter used in the Algorithm 6 of NUTS.

...

Other parameters that may be useful.


yanbowisc/SIMP documentation built on Oct. 30, 2022, 1:33 a.m.