View source: R/rmh.colwise.new.R
rmh_colwise_new | R Documentation |
Function to implement the Metropolis step.
rmh_colwise_new( A_start, lpd_func, method = "RW", tau = NULL, eps, eps_bar, H, mu, LL = 10, ColSigma.A.used, alpha, grad_lpd_func, M_adapt, M_diag, delta, iter, samp.size, ... )
A_start |
A or B in the current iteration. |
lpd_func |
log full conditional density function of A or B. |
method |
Method for the metropolis. We have three choices: RW (default), HMC, NUTS. We recommend to use RW method always if no other reasons. |
tau |
The standard deviation for the proposal distribution used in the RW-Metropolis. |
eps |
Initial value for estimating the stepsize in NUTS-metropolis. |
eps_bar |
eps_bar parameter for NUTS-metropolis. |
H |
The H_m parameter for NUTS-metropolis. |
mu |
The mu parameter for NUTS-metropolis. |
LL |
Number of leapfrog steps in the trajectory |
ColSigma.A.used |
Covariance matrix for our matrix parameter A or B |
alpha |
Tempering parameter |
grad_lpd_func |
The function to calculate the gradients of the log full conditional posterior density of A or B. |
M_adapt |
The M_adapt parameter used in the Algorithm 6 of NUTS. |
M_diag |
Covariance matrix for our matrix parameter A or B. |
delta |
The delta parameter for NUTS-metropolis. |
iter |
The iteration index. |
samp.size |
Sample size. |
... |
Other parameters that may be useful. |
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.