rmh_colwise_new: Function to implement the Metropolis step.

View source: R/rmh.colwise.new.R

rmh_colwise_newR Documentation

Function to implement the Metropolis step.

Description

Function to implement the Metropolis step.

Usage

rmh_colwise_new(
  A_start,
  lpd_func,
  method = "RW",
  tau = NULL,
  eps,
  eps_bar,
  H,
  mu,
  LL = 10,
  ColSigma.A.used,
  alpha,
  grad_lpd_func,
  M_adapt,
  M_diag,
  delta,
  iter,
  samp.size,
  ...
)

Arguments

A_start

A or B in the current iteration.

lpd_func

log full conditional density function of A or B.

method

Method for the metropolis. We have three choices: RW (default), HMC, NUTS. We recommend to use RW method always if no other reasons.

tau

The standard deviation for the proposal distribution used in the RW-Metropolis.

eps

Initial value for estimating the stepsize in NUTS-metropolis.

eps_bar

eps_bar parameter for NUTS-metropolis.

H

The H_m parameter for NUTS-metropolis.

mu

The mu parameter for NUTS-metropolis.

LL

Number of leapfrog steps in the trajectory

ColSigma.A.used

Covariance matrix for our matrix parameter A or B

alpha

Tempering parameter

grad_lpd_func

The function to calculate the gradients of the log full conditional posterior density of A or B.

M_adapt

The M_adapt parameter used in the Algorithm 6 of NUTS.

M_diag

Covariance matrix for our matrix parameter A or B.

delta

The delta parameter for NUTS-metropolis.

iter

The iteration index.

samp.size

Sample size.

...

Other parameters that may be useful.


yanbowisc/SIMP documentation built on Oct. 30, 2022, 1:33 a.m.