title: 'Methylation analysis'

knitr::opts_chunk$set(echo = TRUE)

logo

```{css, echo=FALSE} .main-container { max-width: 100%; }

h1 { text-align: center; background-color:#A6CEE3; border-radius: 0px; padding: 20px; }

<style>
div.lblue { background-color:#DEEBF7; border-radius: 0px; padding: 5px;}
</style>
<div class = "lblue">
## `r sampleName`
<br>
**Histologic diagnosis**:
<br>
<div style="display:inline-block;margin-left:10px">
`r histologicDx`
</div>
<br> <br> 
`r kable(class.table) %>% kable_styling(bootstrap_options = "striped", full_width = F, position = "left") %>% 
 row_spec(0, background = "grey", color = "white") %>%
 row_spec(1:nrow(class.table), background = "white", color = "black") %>%
 add_header_above(c("Methylation prediction" = ncol(class.table)), bold = T, font_size = 15) `
<br> <br>
...
</div>

<div class = "row">
```r
kable(p.table) %>%  kable_styling(bootstrap_options = "striped", full_width = F, position = "left") %>% 
    add_header_above(c("Tumor purity estimations" = ncol(p.table)), bold = T, font_size = 20)
#p1 = plotly::subplot(res1[[3]], shareX = T, titleX = T, titleY = T) 

pass.index = which(res1[[1]]$PASS=="Y")
res1[[1]]$ID = sapply(res1[[1]]$ID, function(x) unlist(strsplit(x, "_"))[1]);
table.1 = kable(res1[[1]]) %>%
  kable_styling("striped", full_width = F, position = "left") %>%
  row_spec(pass.index, bold = T,background = scales::alpha(paired.color[3], 0.5) ) %>%
  row_spec(0, background = "grey", color = "white")%>%
  footnote(general = "The 15 nearest neighbors in DKFZ's 2081 samples. (doi:10.1038/nature26000)",
           number = c("ID: sample ID","Cancer: cancer type", 
                      "Distance: The distance of diagnosis sample to the sample in 'ID' column",
                      "Threshold: The threshold used to defined 'PASS' column. The threshold is defined by taking the minumum of mean distance of distances within this subclass and distance between samples in this subclass and other samples in DKFZ's data.",
                      "PASS: is the diagnosis cases located within close distance to this cancer type. Y: yes, N: no."),
           footnote_as_chunk = F)  %>% 
  add_header_above(c("Nearest 15 neighbors" = ncol(res1[[1]])), bold = T, font_size = 20)

not.informative = which(res1[[2]]$`N PASS` == 0)
informative = which(res1[[2]]$`N PASS` > 0)
res1[[2]] = res1[[2]][c(informative,not.informative),]
table.2 = res1[[2]][,c(1,3,2)] %>%
    mutate(Cancer = ifelse(`N PASS`>0, cell_spec(Cancer, background =paired.color[3]),
                         cell_spec(Cancer, background ="transparent")),
        `N PASS` = ifelse(`N PASS` >0, cell_spec(`N PASS`, background =paired.color[3]),
                         cell_spec(`N PASS`, background ="transparent"))) %>%
        kable("html",escape = F) %>%
        kable_styling("striped", full_width = F, position = "left")
if(length(informative) > 0){
    table.2 = table.2 %>% pack_rows("Informative neighbors", start_row = 1, 
        end_row = length(informative), 
        label_row_css = "background-color: #B2DF8A; color: black;")
}
if(length(not.informative) > 0){
    table.2 = table.2 %>% pack_rows("Not informative neighbors", start_row = length(informative) + 1,
        end_row = nrow(res1[[2]]), label_row_css = "background-color: grey; color: white;") %>%
        row_spec( (length(informative) + 1):(nrow(res1[[2]])), background = "grey", color = "white" )
}

table.2 = table.2 %>% 
  row_spec(0, background = "grey", color = "white") %>%
  add_header_above(c("Frequency of nearest neighbor classes" = ncol(res1[[2]]) ), bold = T, font_size = 20 ) %>%
  scroll_box(width = "100%", height = "300px%") %>%
  footnote(general = "Frequency table of nearest 15 neighbor cancer types. N PASS: number of neighbors pass the distance threshold.")

#2d umap
umap.center = aggregate(umap.layout[,1:2], list(umap.layout$class), median)
colnames(umap.center)[1] = "class"
idx = which(umap.center$class == sampleName)
myArrow <- list(
    x = umap.center$X1[idx],y = umap.center$X2[idx],
    text = paste0("<b>", sampleName, "</b>"),
    textangle = 0, ax = 0, ay = -75,
    bgcolor = alpha("yellow", 0.5),
    font = list(color = "black", size=12),
    arrowcolor = "black", arrowsize = 3, arrowwidth = 1, arrowhead = 2);
all_annotations = lapply(unique(y.ref), function(x){
    idx = which(umap.center$class == x)
    ann = list(showarrow = F, x = umap.center$X1[idx], y = umap.center$X2[idx], 
    text = paste0("<b>",umap.center$class[idx],"</b>"), 
    bgcolor = alpha("white", 0.5),
    font = list(size = 10, color = plot.col[umap.center$class[idx]]));
    ann;
})
all_annotations[[length(all_annotations)+1]] = myArrow
p1 = plot_ly(x = umap.layout$X1, y  = umap.layout$X2, text = umap.layout$class,
             color = umap.layout$class, colors = plot.col,
             type="scatter", mode = "markers") %>%
     layout(annotations = all_annotations, showlegend = FALSE,
                   xaxis = list(title = "umap 1", zeroline = FALSE), 
                   yaxis = list(title = "umap 2", zeroline = FALSE))



#2d tsne
tsne.center = aggregate(tsne[,1:2], list(tsne$class), median)
colnames(tsne.center)[1] = "class"
idx = which(tsne.center$class == sampleName)
myArrow <- list(
    x = tsne.center$X1[idx],y = tsne.center$X2[idx],
    text = paste0("<b>", sampleName, "</b>"),
    textangle = 0, ax = 0, ay = -75,
    bgcolor = alpha("yellow", 0.5),
    font = list(color = "black", size=12),
    arrowcolor = "black", arrowsize = 3, arrowwidth = 1, arrowhead = 2)
all_annotations = lapply(unique(y.ref), function(x){
    idx = which(tsne.center$class == x)
    ann = list(showarrow = F, x = tsne.center$X1[idx], y = tsne.center$X2[idx], 
    text = paste0("<b>",tsne.center$class[idx],"</b>"), 
    bgcolor = alpha("white", 0.5),
    font = list(size = 10, color = plot.col[tsne.center$class[idx]]));
    ann;
})
all_annotations[[length(all_annotations)+1]] = myArrow
p2 = plot_ly(x = tsne$X1, y  = tsne$X2, text = tsne$class,
             color = tsne$class, colors = plot.col,
             type="scatter", mode = "markers") %>%
     layout(annotations = all_annotations, showlegend = FALSE,
                   xaxis = list(title = "tsne 1", zeroline = FALSE), 
                   yaxis = list(title = "tsne 2", zeroline = FALSE))



### Methylation nearest neighbors wzxhzdk:3
### UMAP wzxhzdk:4





table.1 %>%  scroll_box(width = "100%", height = "800px")

TSNE

p2

CNV plot based on methylation profile. (Only available when DKFZ classifier is installed.)

par(ps = 5, cex = 1, cex.main = 2, las =1)
#MNPcnvplot1(Mset, sex = sex, main = sampleName)
#MNPcnvplot(Mset, sex = sex, main = sampleName, set_par = F)



Gains/amplifications represent positive, losses negative deviations from the baseline. 29 brain tumor relevant gene regions are highlighted for easier assessment.



yeswzc/cnsTumorMNN documentation built on May 23, 2024, 12:03 p.m.