Description Usage Arguments Details Value Note Author(s) References Examples
This function solves
H β = y
, where H>=0;
1 | lmcholsolve(x, y)
|
x |
Must be a numeric matrix: integer matrix are NOT allowed. |
y |
Response variable |
Considering:
H β = y
, in each iteration newton's scalor is
β_{LSE}
. The fatest algorithm is 'sweeping method'/Cholesky Decomposition. The mian reason is that: H >= 0. If we tend not to check the condition, then
H= LL^T
, where L is low tri-angle matrix. Hence we derive
[H,y]^T[H,y]=≤ft( \begin{array}{ll} L & 0\\ l^T & d \end{array} \right) \times ≤ft( \begin{array}{ll} L^T & l\\ 0 & d \end{array} \right)
and
L l= H^Ty , L^T β = l, d^2=\|y-hat(y)\|_{\ell_2}^2
The performance cound be found in inst/doc.
beta |
The estimations. |
Convergences |
Number of non-zero diag-elements. |
tol=1e-9 in Cholesky decomposition.
Yifan Yang
Lange, Kenneth. Numerical analysis for statisticians. chap 7. Springer, 2010.
1 2 3 4 5 |
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.