Description Usage Arguments Details References
WNW estimator of CES
| 1 2 3 4 5 6 7 8 9 10 11 12 13 | 
| formula | an object class formula. | 
| data | an optional data to be used. | 
| prob | upper tail probability for VaR | 
| nw_kernel | Kernel for weighted nadaraya watson | 
| nw_h | Bandwidth for WNW. If not specified, use the asymptotic optimal. | 
| h0 | Binwidth | 
| init | initial value for finding lambda | 
| eps | small value | 
| iter | maximum iteration when finding lambda | 
| lower_invert | lower y when inverting the cdf | 
| upper_invert | upper y when inverting the cdf | 
Plugging-in in methods gives
\hat{μ}_p(x) = \frac{1}{p} ∑_{t = 1}^n W_{c,t}(x, h) ≤ft[ Y_t \bar{G}_{h_0} (\hat{ν}_p (x) - Y_t) + h_0 G_{1, h_0} (\hat{ν}_p (x) - Y_t) \right]
Cai, Z., & Wang, X. (2008). Nonparametric estimation of conditional VaR and expected shortfall. Journal of Econometrics, 147(1), 120-130.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.