Description Usage Arguments Value See Also
View source: R/preprocessing.R
Checks multiple columns in a dataframe to see if each is normally distributed. If not, then box-cox transform
1 2 3 4 5 6 | MultipleColumnsNormalCheckThenBoxCox(
input.data,
names.of.dependent.variables,
alpha.for.shapiro,
output.lambda.in.col.name = TRUE
)
|
input.data |
A dataframe. |
names.of.dependent.variables |
Vector of strings where each element is the name of a column to assess for normality and potentially transform. |
alpha.for.shapiro |
Numerical value from 0 to 1. Threshold for what is considered not normal. If p-value is less than this threshold, then the data is considered not normal. |
output.lambda.in.col.name |
Boolean indicating if the lambda used for boxcox should be included in the column name. |
A dataframe with the columns specified in names.of.dependent.variables.
Other Preprocessing functions:
AddColBinnedToBinary()
,
AddColBinnedToQuartiles()
,
AddPCsToEnd()
,
ConvertDataToPercentiles()
,
CorAssoTestMultipleWithErrorHandling()
,
DownSampleDataframe()
,
GenerateElbowPlotPCA()
,
GeneratePC1andPC2PlotsWithAndWithoutOutliers()
,
Log2TargetDensityPlotComparison()
,
LookAtPCFeatureLoadings()
,
NormalCheckThenBoxCoxTransform()
,
RanomlySelectOneRowForEach()
,
RecodeIdentifier()
,
RemoveColWithAllZeros()
,
RemoveRowsBasedOnCol()
,
RemoveSamplesWithInstability()
,
SplitIntoTrainTest()
,
StabilityTestingAcrossVisits()
,
SubsetDataByContinuousCol()
,
TwoSampleTTest()
,
ZScoreChallengeOutliers()
,
captureSessionInfo()
,
correlation.association.test()
,
describeNumericalColumnsWithLevels()
,
describeNumericalColumns()
,
generate.descriptive.plots.save.pdf()
,
generate.descriptive.plots()
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.