Description Usage Arguments Details Value See Also Examples
View source: R/classification.R
For this function, mtry is optimized using randomForest::tuneRF() and ntree is optimized using find.best.number.of.trees() function on the out-of-bag error. After optimizing for mtry and ntree, the optimal values are used to create a new random forest model, and this model is outputted.
1 2 3 4 5 6 | RandomForestAutomaticMtryAndNtree(
inputted.data,
name.of.predictors.to.use,
target.column.name,
seed
)
|
inputted.data |
A dataframe. |
name.of.predictors.to.use |
A vector of strings that specifies the columns with values that we want to use for prediction. |
target.column.name |
A string that specifies the column with values that we want to predict for. This column should be a factor. |
seed |
A integer that specifies the seed to use for random number generation. |
However, the default values of mtry and ntree from randomForest() are actually preferred in most cases.
A randomForest object is returned
Other Classification functions:
CVPredictionsRandomForest()
,
CVRandomForestClassificationMatrixForPheatmap()
,
GenerateExampleDataMachinelearnr()
,
LOOCVPredictionsRandomForestAutomaticMtryAndNtree()
,
LOOCVRandomForestClassificationMatrixForPheatmap()
,
RandomForestClassificationGiniMatrixForPheatmap()
,
RandomForestClassificationPercentileMatrixForPheatmap()
,
eval.classification.results()
,
find.best.number.of.trees()
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 | id = c("1a", "1b", "1c", "1d", "1e", "1f", "1g", "2a", "2b", "2c", "2d", "2e", "2f", "3a",
"3b", "3c", "3d", "3e", "3f", "3g", "3h", "3i")
x = c(18, 21, 22, 24, 26, 26, 27, 30, 31, 35, 39, 35, 30, 40, 41, 42, 44, 46, 47, 48, 49, 54)
y = c(10, 11, 22, 15, 12, 13, 14, 33, 39, 37, 44, 40, 45, 27, 29, 20, 28, 21, 30, 31, 23, 24)
a = c(1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1)
b = c(1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1)
actual = as.factor(c("1", "1", "1", "1", "1", "1", "1", "2", "2", "2", "2", "2",
"2", "3", "3", "3",
"3", "3", "3", "3", "3", "3"))
example.data <- data.frame(id, x, y, a, b, actual)
rf.result <- RandomForestAutomaticMtryAndNtree(example.data, c("x", "y", "a", "b"),
"actual", seed=2)
predicted <- rf.result$predicted
actual <- example.data[,"actual"]
#Result is not perfect because RF model does not over fit to the training data.
eval.classification.results(as.character(actual), as.character(predicted), "Example")
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.