coptest.p: Pairwise two sample test for empirical copula.

Description Usage Arguments Details Value Author(s) References Examples

View source: R/coptest_p.R

Description

Autometed procedure to test the difference of copula with pairwise variables.

Usage

1
coptest.p(x1, x2, nperm = 100, approx = TRUE, silent = TRUE)

Arguments

x1

Numeric matrix. Samples in row and variables in column

x2

Numeric matrix. The same with x1.

nperm

The number of permutation.

approx

Logical. If set 'approx=TRUE', p-value will be approximated using generalized Parato distribution. Otherwise, no approximation of p-value.

silent

Logical. If FALSE, don't diplay progression message.

Details

The difference of coptest is that coptest.p compare bivariate dependency structure rather than full joint dependencies as the coptest. Automatically generate all pairs of bivariate copula and compare them between the two conditions.

Value

List of two components:

Author(s)

Yusuke MATSUI

References

Yusuke MATSUI et al.(2020) RoDiCE: Robust differential protein co-expression analysis for cancer complexome (submitted).

Clerk DJ et al.(2019) Integrated Proteogenomic Characterization of Clear Cell Renal Cell Carcinoma.Cell;179(4),964-983 e931.

Examples

1
2
3
4
5
6
7
8
data(ccrcc.pbaf) # example data from clear renal cell carcinoma(clerk et al.2019)
data(corum.hsp.pbaf)
tumor = ccrcc.pbaf$tumor # 110 samples and 10 proteins from PBAF complex
normal = ccrcc.pbaf$normal # 84 samples and 10 proteins from PBAF complex

# perform copula test for pairwise variables.
result = coptest.p(tumor,normal,nperm=100,approx=TRUE)
result$tbl

ymatts/RoDiCE documentation built on Jan. 1, 2021, 1:45 p.m.