AnalyzeImputation <- function(dataX, datay, Ncomp, NK, imputMethod){
ImputationRegresion <- NULL
results <- list()
ImputationRegresion <-PLS_lm(datay,dataX,Ncomp,typeVC="standard")
if(Ncomp == 1){
cv.modpls<-cv.plsR(datay,dataX,nt= 1,NK=NK)}
else if(Ncomp == 2){
cv.modpls<-cv.plsR(datay,dataX,nt= 2,NK=NK)}
else if(Ncomp == 3){
cv.modpls<-cv.plsR(datay,dataX,nt= 3,NK=NK)}
else if(Ncomp == 4){
cv.modpls<-cv.plsR(datay,dataX,nt= 4,NK=NK)}
else if(Ncomp == 5){
cv.modpls<-cv.plsR(datay,dataX,nt= 5,NK=NK)}
else if(Ncomp == 6){
cv.modpls<-cv.plsR(datay,dataX,nt= 6,NK=NK)}
else if(Ncomp == 7){
cv.modpls<-cv.plsR(datay,dataX,nt= 7,NK=NK)}
else if(Ncomp == 8){
cv.modpls<-cv.plsR(datay,dataX,nt= 8,NK=NK)}
else if(Ncomp == 9){
cv.modpls<-cv.plsR(datay,dataX,nt= 9,NK=NK)}
else {
cv.modpls<-cv.plsR(datay,dataX,nt= 10,NK=NK)}
res.cv.modpls<-cvtable(summary(cv.modpls)) # calcul de nombre de composantes par validation croisse
results$Number_components_CV<-res.cv.modpls[1]
results$CVPRESSCriteria<-res.cv.modpls[2]
results$imputMethod <- imputMethod
results$Coeffs <- ImputationRegresion$Std.Coeffs
results$AICperComposant <- ImputationRegresion$AIC
results$plot_components <- plot(res.cv.modpls)
return(results)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.