Description Usage Arguments Value Examples
The 'optimal' algorithm uses information value of each item as the objective, then uses lpSolveAPI to find a complete test solution that maximizes overall test information while still meeting blueprint constraints. Then it selects the max information item from the unassigned items in the solution.
1 | isr.optimal.select(simuleeOut, simulation)
|
simuleeOut |
A tibble containing the in-progress simulee test output. |
simulation |
An object defining the test that is being run. |
A list containing the selected moduleIndex, plus other values useful for understanding the selection.
1 2 3 4 | simulation = initSimulation(readRDS(system.file("example/passage-optimal.rds", package = "CATSimulator")))
simulation$control$solver = list(name = "lpsolve", external = F, mipGap = 0.0001, timeout = 1000, verbose = F)
simuleeOut = initSimulee(generateSimuleesByTrueTheta(-2, 10001), simulation)
selection = isr.optimal.select(simuleeOut, simulation)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.