isr.optimal.select: Returns the next items that should be assigned to the...

Description Usage Arguments Value Examples

Description

The 'optimal' algorithm uses information value of each item as the objective, then uses lpSolveAPI to find a complete test solution that maximizes overall test information while still meeting blueprint constraints. Then it selects the max information item from the unassigned items in the solution.

Usage

1
isr.optimal.select(simuleeOut, simulation)

Arguments

simuleeOut

A tibble containing the in-progress simulee test output.

simulation

An object defining the test that is being run.

Value

A list containing the selected moduleIndex, plus other values useful for understanding the selection.

Examples

1
2
3
4
  simulation = initSimulation(readRDS(system.file("example/passage-optimal.rds", package = "CATSimulator")))
  simulation$control$solver = list(name = "lpsolve", external = F, mipGap = 0.0001, timeout = 1000, verbose = F)
  simuleeOut = initSimulee(generateSimuleesByTrueTheta(-2, 10001), simulation)
  selection = isr.optimal.select(simuleeOut, simulation)

yuehmeir2/CATSimulator documentation built on June 13, 2021, 7:02 p.m.