bndovb_tuning: bndovb_tuning

Description Usage Arguments Value Author(s) References Examples

View source: R/bndovb_tuning.R

Description

This function computes an optimal tuning parameter to compute the confidence interval for bndovb function The function returns an optimal tuning parameter using double bootstrap procedure

Usage

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
bndovb_tuning(
  maindat,
  auxdat,
  depvar,
  ovar,
  comvar,
  method = 1,
  mainweights = NULL,
  auxweights = NULL,
  signres = NULL,
  nboot = 100,
  scalegrid = c(-1/2, -1/3, -1/4, -1/5, -1/6),
  tau = 0.05,
  seed = 210823,
  parallel = TRUE
)

Arguments

maindat

Main data set. It must be a data frame.

auxdat

Auxiliary data set. It must be a data frame.

depvar

A name of a dependent variable in main dataset

ovar

A name of an omitted variable in main dataset which exists in auxiliary data

comvar

A vector of the names of common regressors existing in both main data and auxiliary data

method

CDF and Quantile function estimation method. Users can choose either 1 or 2. If the method is 1, the CDF and quantile function is estimated assuming a parametric normal distribution. If the method is 2, the CDF and quantile function is estimated using a nonparaemtric estimator in Li and Racine(2008) doi: 10.1198/073500107000000250, Li, Lin, and Racine(2013) doi: 10.1080/07350015.2012.738955. Default is 1.

mainweights

An optional weight vector for the main dataset. The length must be equal to the number of rows of 'maindat'.

auxweights

An optional weight vector for the auxiliary dataset. The length must be equal to the number of rows of 'auxdat'.

signres

An option to impose a sign restriction on a coefficient of an omitted variable. Set either NULL or pos or neg. Default is NULL. If NULL, there is no sign restriction. If 'pos', the estimator imposes an extra restriction that the coefficient of an omitted variable must be positive. If 'neg', the estimator imposes an extra restriction that the coefficient of an omitted variable must be negative.

nboot

Number of bootstraps to compute the confidence interval. Default is 100.

scalegrid

Tuning parameter grid to search. It must be a vector of numbers between -1/2 and 0. Default is c(-1/2,-1/3,-1/4,-1/5,-1/6).

tau

Significance level. (1-tau)% confidence interval is computed. Default is 0.05.

seed

Seed for random number generation. Default is 210823.

parallel

Either TRUE or FALSE. Whether to compute in parallel. Default is TRUE.

Value

Returns a list of 3 components :

optimal_scale

An optimal scale parameter which gives coverage rates closest to (1-tau)

cover_beta_l

A matrix of coverage rates of the lower bound parameters under different scale parameters

cover_beta_u

A matrix of coverage rates of the lower bound parameters under different scale parameters

Author(s)

Yujung Hwang, yujungghwang@gmail.com

References

Hwang, Yujung (2021)

Bounding Omitted Variable Bias Using Auxiliary Data. Available at SSRN.doi: 10.2139/ssrn.3866876

Examples

1
2
3
4
5
6
data(maindat_nome)
data(auxdat_nome)

# To shorten computation time, I set the number of bootstrap small in an example below.
# In practice, please set it a large number
bndovb_tuning(maindat_nome,auxdat_nome,depvar="y",ovar="x1",comvar=c("x2","x3"),method=1,nboot=2)

yujunghwang/bndovb documentation built on Dec. 23, 2021, 8:20 p.m.